File size: 16,115 Bytes
a166479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py
"""
MaskFormer criterion.
"""
import torch
import numpy as np
import torch.nn.functional as F
import torch.distributed as dist
from torch import nn
import sys
import os
sys.path.append(os.path.dirname(__file__) + os.sep + '../')

from .point_features import point_sample, get_uncertain_point_coords_with_randomness
from .misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list, get_world_size


def dice_loss(
        inputs: torch.Tensor,
        targets: torch.Tensor,
        num_masks: float,
    ):
    """
    Compute the DICE loss, similar to generalized IOU for masks
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    """
    inputs = inputs.sigmoid()
    inputs = inputs.flatten(1)
    numerator = 2 * (inputs * targets).sum(-1)
    denominator = inputs.sum(-1) + targets.sum(-1)
    loss = 1 - (numerator + 1) / (denominator + 1)
    return loss.sum() / num_masks


def sigmoid_ce_loss(
        inputs: torch.Tensor,
        targets: torch.Tensor,
        num_masks: float,
    ):
    """
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    Returns:
        Loss tensor
    """
    loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
    return loss.mean(1).sum() / num_masks

def sigmoid_focal_loss(inputs, targets, num_masks, alpha: float = 0.25, gamma: float = 2):
    """
    Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
        alpha: (optional) Weighting factor in range (0,1) to balance
                positive vs negative examples. Default = -1 (no weighting).
        gamma: Exponent of the modulating factor (1 - p_t) to
               balance easy vs hard examples.
    Returns:
        Loss tensor
    """
    prob = inputs.sigmoid()
    ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
    p_t = prob * targets + (1 - prob) * (1 - targets)
    loss = ce_loss * ((1 - p_t) ** gamma)

    if alpha >= 0:
        alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
        loss = alpha_t * loss

    return loss.mean(1).sum() / num_masks

def calculate_uncertainty(logits):
    """
    We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
        foreground class in `classes`.
    Args:
        logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or
            class-agnostic, where R is the total number of predicted masks in all images and C is
            the number of foreground classes. The values are logits.
    Returns:
        scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
            the most uncertain locations having the highest uncertainty score.
    """
    assert logits.shape[1] == 1
    gt_class_logits = logits.clone()
    return -(torch.abs(gt_class_logits))


class SetCriterion(nn.Module):
    """This class computes the loss for DETR.
    The process happens in two steps:
        1) we compute hungarian assignment between ground truth boxes and the outputs of the model
        2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
    """

    def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses,
                 num_points, oversample_ratio, importance_sample_ratio, device):
        """Create the criterion.
        Parameters:
            num_classes: number of object categories, omitting the special no-object category
            matcher: module able to compute a matching between targets and proposals
            weight_dict: dict containing as key the names of the losses and as values their relative weight.
            eos_coef: relative classification weight applied to the no-object category
            losses: list of all the losses to be applied. See get_loss for list of available losses.
        """
        super().__init__()
        self.num_classes = num_classes
        self.matcher = matcher
        self.weight_dict = weight_dict
        self.eos_coef = eos_coef
        self.losses = losses
        self.device = device
        empty_weight = torch.ones(self.num_classes + 1).to(device)
        empty_weight[-1] = self.eos_coef
        self.register_buffer("empty_weight", empty_weight)        

        # pointwise mask loss parameters
        self.num_points = num_points
        self.oversample_ratio = oversample_ratio
        self.importance_sample_ratio = importance_sample_ratio

    def loss_labels(self, outputs, targets, indices, num_masks):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        """
        assert "pred_logits" in outputs
        src_logits = outputs["pred_logits"].float()

        idx = self._get_src_permutation_idx(indices)
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]).to(self.device)
        target_classes = torch.full(src_logits.shape[:2], 0, dtype=torch.int64, device=src_logits.device)
        target_classes[idx] = target_classes_o

        loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
        losses = {"loss_ce": loss_ce}
        return losses
    
    def loss_masks(self, outputs, targets, indices, num_masks):
        """Compute the losses related to the masks: the focal loss and the dice loss.
        targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
        """
        assert "pred_masks" in outputs

        src_idx = self._get_src_permutation_idx(indices)
        tgt_idx = self._get_tgt_permutation_idx(indices)
        src_masks = outputs["pred_masks"] # 
        src_masks = src_masks[src_idx]
        masks = [t["masks"] for t in targets]
        # TODO use valid to mask invalid areas due to padding in loss
        target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
        target_masks = target_masks.to(src_masks)
        target_masks = target_masks[tgt_idx]

        # ===================================================================================
        # No need to upsample predictions as we are using normalized coordinates :)
        # N x 1 x H x W

        # src_masks = src_masks[:, None]
        # target_masks = target_masks[:, None]

        # with torch.no_grad():
        #     # sample point_coords
        #     point_coords = get_uncertain_point_coords_with_randomness(
        #         src_masks,
        #         lambda logits: calculate_uncertainty(logits),
        #         self.num_points,
        #         self.oversample_ratio,
        #         self.importance_sample_ratio,
        #     )
        #     # get gt labels
        #     point_labels = point_sample(
        #         target_masks,
        #         point_coords,
        #         align_corners=False,
        #     ).squeeze(1)

        # point_logits = point_sample(
        #     src_masks,
        #     point_coords,
        #     align_corners=False,
        # ).squeeze(1)
        # ===================================================================================
        point_logits = src_masks.flatten(1)
        point_labels = target_masks.flatten(1)       

        losses = {
            "loss_mask": sigmoid_ce_loss(point_logits, point_labels, num_masks), # sigmoid_focal_loss(point_logits, point_labels, num_masks), # 
            "loss_dice": dice_loss(point_logits, point_labels, num_masks)
        }

        del src_masks
        del target_masks
        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def _get_binary_mask(self, target):
        y, x = target.size()
        target_onehot = torch.zeros(self.num_classes + 1, y, x).to(target.device)
        target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
        return target_onehot

    def get_loss(self, loss, outputs, targets, indices, num_masks):
        loss_map = {
            'labels': self.loss_labels,
            'masks': self.loss_masks,
        }
        assert loss in loss_map, f"do you really want to compute {loss} loss?"
        return loss_map[loss](outputs, targets, indices, num_masks)

    def forward(self, outputs, gt_masks):
        """This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             gt_masks: [bs, h_net_output, w_net_output]
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
        targets = self._get_targets(gt_masks)
        # Retrieve the matching between the outputs of the last layer and the targets
        indices = self.matcher(outputs_without_aux, targets)

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_masks = sum(len(t["labels"]) for t in targets)
        num_masks = torch.as_tensor([num_masks], dtype=torch.float, device=next(iter(outputs.values())).device)
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_masks)
        num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices, num_masks))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if "aux_outputs" in outputs:
            for i, aux_outputs in enumerate(outputs["aux_outputs"]):
                indices = self.matcher(aux_outputs, targets)
                for loss in self.losses:
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks)
                    l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses

    def _get_targets(self, gt_masks):
        targets = []
        for mask in gt_masks:
            binary_masks = self._get_binary_mask(mask)
            cls_label = torch.unique(mask)
            labels = cls_label[1:]
            binary_masks = binary_masks[labels]
            targets.append({'masks': binary_masks, 'labels': labels})
        return targets
        
    def __repr__(self):
        head = "Criterion " + self.__class__.__name__
        body = [
            "matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
            "losses: {}".format(self.losses),
            "weight_dict: {}".format(self.weight_dict),
            "num_classes: {}".format(self.num_classes),
            "eos_coef: {}".format(self.eos_coef),
            "num_points: {}".format(self.num_points),
            "oversample_ratio: {}".format(self.oversample_ratio),
            "importance_sample_ratio: {}".format(self.importance_sample_ratio),
        ]
        _repr_indent = 4
        lines = [head] + [" " * _repr_indent + line for line in body]
        return "\n".join(lines)


class Criterion(object):
    def __init__(self, num_classes, alpha=0.5, gamma=2, weight=None, ignore_index=0):
        self.num_classes = num_classes
        self.alpha = alpha
        self.gamma = gamma
        self.weight = weight
        self.ignore_index = ignore_index
        self.smooth = 1e-5
        self.ce_fn = nn.CrossEntropyLoss(weight=self.weight, ignore_index=self.ignore_index, reduction='none')
    
    def get_loss(self, outputs, gt_masks):
        """This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             gt_masks: [bs, h_net_output, w_net_output]
        """
        loss_labels = 0.0
        loss_masks = 0.0
        loss_dices = 0.0
        num = gt_masks.shape[0]
        pred_logits = [outputs["pred_logits"].float()] # [bs, num_query, num_classes + 1]
        pred_masks = [outputs['pred_masks'].float()] # [bs, num_query, h, w]
        targets = self._get_targets(gt_masks, pred_logits[0].shape[1], pred_logits[0].device)
        for aux_output in outputs['aux_outputs']:            
            pred_logits.append(aux_output["pred_logits"].float())
            pred_masks.append(aux_output["pred_masks"].float())

        gt_label = targets['labels'] # [bs, num_query]
        gt_mask_list = targets['masks']
        for mask_cls, pred_mask in zip(pred_logits, pred_masks):            
            loss_labels += F.cross_entropy(mask_cls.transpose(1, 2), gt_label)
            # loss_masks += self.focal_loss(pred_result, gt_masks.to(pred_result.device))
            loss_dices += self.dice_loss(pred_mask, gt_mask_list)

        return loss_labels/num, loss_dices/num

    def binary_dice_loss(self, inputs, targets):      
        inputs = inputs.sigmoid()
        inputs = inputs.flatten(1)
        targets = targets.flatten(1)
        numerator = 2 * torch.einsum("nc,mc->nm", inputs, targets)
        denominator = inputs.sum(-1)[:, None] + targets.sum(-1)[None, :]
        loss = 1 - (numerator + 1) / (denominator + 1)
        return loss.mean()

    def dice_loss(self, predict, targets):    
        bs = predict.shape[0]
        total_loss = 0
        for i in range(bs):
            pred_mask = predict[i]
            tgt_mask = targets[i].to(predict.device)
            dice_loss_value = self.binary_dice_loss(pred_mask, tgt_mask) 
            total_loss += dice_loss_value
        return total_loss/bs

    def focal_loss(self, preds, labels):
        """
        preds: [bs, num_class + 1, h, w]
        labels: [bs, h, w]
        """
        logpt = -self.ce_fn(preds, labels)
        pt = torch.exp(logpt)
        loss = -((1 - pt) ** self.gamma) * self.alpha * logpt
        return loss.mean()

    def _get_binary_mask(self, target):
        y, x = target.size()
        target_onehot = torch.zeros(self.num_classes + 1, y, x)
        target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
        return target_onehot

    def _get_targets(self, gt_masks, num_query, device):
        binary_masks = []
        gt_labels = []
        for mask in gt_masks:
            mask_onehot = self._get_binary_mask(mask)
            cls_label = torch.unique(mask)
            labels = torch.full((num_query,), 0, dtype=torch.int64, device=gt_masks.device)
            labels[:len(cls_label)] = cls_label           
            binary_masks.append(mask_onehot[cls_label])
            gt_labels.append(labels)
        return {"labels": torch.stack(gt_labels).to(device), "masks": binary_masks}