|
""" |
|
This interface provides access to four datasets: |
|
1) refclef |
|
2) refcoco |
|
3) refcoco+ |
|
4) refcocog |
|
split by unc and google |
|
|
|
The following API functions are defined: |
|
REFER - REFER api class |
|
getRefIds - get ref ids that satisfy given filter conditions. |
|
getAnnIds - get ann ids that satisfy given filter conditions. |
|
getImgIds - get image ids that satisfy given filter conditions. |
|
getCatIds - get category ids that satisfy given filter conditions. |
|
loadRefs - load refs with the specified ref ids. |
|
loadAnns - load anns with the specified ann ids. |
|
loadImgs - load images with the specified image ids. |
|
loadCats - load category names with the specified category ids. |
|
getRefBox - get ref's bounding box [x, y, w, h] given the ref_id |
|
showRef - show image, segmentation or box of the referred object with the ref |
|
getMask - get mask and area of the referred object given ref |
|
showMask - show mask of the referred object given ref |
|
""" |
|
|
|
import sys |
|
import os.path as osp |
|
import json |
|
import pickle as pickle |
|
import time |
|
import itertools |
|
import skimage.io as io |
|
import matplotlib.pyplot as plt |
|
from matplotlib.collections import PatchCollection |
|
from matplotlib.patches import Polygon, Rectangle |
|
from pprint import pprint |
|
import numpy as np |
|
from pycocotools import mask |
|
|
|
|
|
class REFER: |
|
|
|
def __init__(self, data_root, dataset='refcoco', splitBy='unc'): |
|
|
|
|
|
|
|
print('loading dataset %s into memory...' % dataset) |
|
if dataset == 'refcocog': |
|
print('Split by {}!'.format(splitBy)) |
|
self.ROOT_DIR = osp.abspath(osp.dirname(__file__)) |
|
self.DATA_DIR = osp.join(data_root, dataset) |
|
if dataset in ['refcoco', 'refcoco+', 'refcocog']: |
|
self.IMAGE_DIR = osp.join(data_root, 'images/mscoco/images/train2014') |
|
elif dataset == 'refclef': |
|
self.IMAGE_DIR = osp.join(data_root, 'images/saiapr_tc-12') |
|
else: |
|
print('No refer dataset is called [%s]' % dataset) |
|
sys.exit() |
|
|
|
|
|
tic = time.time() |
|
ref_file = osp.join(self.DATA_DIR, 'refs(' + splitBy + ').p') |
|
self.data = {} |
|
self.data['dataset'] = dataset |
|
f = open(ref_file, 'r') |
|
self.data['refs'] = pickle.load(open(ref_file, 'rb')) |
|
|
|
|
|
instances_file = osp.join(self.DATA_DIR, 'instances.json') |
|
instances = json.load(open(instances_file, 'r')) |
|
self.data['images'] = instances['images'] |
|
self.data['annotations'] = instances['annotations'] |
|
self.data['categories'] = instances['categories'] |
|
|
|
|
|
self.createIndex() |
|
print('DONE (t=%.2fs)' % (time.time() - tic)) |
|
|
|
def createIndex(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print('creating index...') |
|
|
|
Anns, Imgs, Cats, imgToAnns = {}, {}, {}, {} |
|
for ann in self.data['annotations']: |
|
Anns[ann['id']] = ann |
|
imgToAnns[ann['image_id']] = imgToAnns.get(ann['image_id'], []) + [ann] |
|
for img in self.data['images']: |
|
Imgs[img['id']] = img |
|
for cat in self.data['categories']: |
|
Cats[cat['id']] = cat['name'] |
|
|
|
|
|
Refs, imgToRefs, refToAnn, annToRef, catToRefs = {}, {}, {}, {}, {} |
|
Sents, sentToRef, sentToTokens = {}, {}, {} |
|
for ref in self.data['refs']: |
|
|
|
ref_id = ref['ref_id'] |
|
ann_id = ref['ann_id'] |
|
category_id = ref['category_id'] |
|
image_id = ref['image_id'] |
|
|
|
|
|
Refs[ref_id] = ref |
|
imgToRefs[image_id] = imgToRefs.get(image_id, []) + [ref] |
|
catToRefs[category_id] = catToRefs.get(category_id, []) + [ref] |
|
refToAnn[ref_id] = Anns[ann_id] |
|
annToRef[ann_id] = ref |
|
|
|
|
|
for sent in ref['sentences']: |
|
Sents[sent['sent_id']] = sent |
|
sentToRef[sent['sent_id']] = ref |
|
sentToTokens[sent['sent_id']] = sent['tokens'] |
|
|
|
|
|
self.Refs = Refs |
|
self.Anns = Anns |
|
self.Imgs = Imgs |
|
self.Cats = Cats |
|
self.Sents = Sents |
|
self.imgToRefs = imgToRefs |
|
self.imgToAnns = imgToAnns |
|
self.refToAnn = refToAnn |
|
self.annToRef = annToRef |
|
self.catToRefs = catToRefs |
|
self.sentToRef = sentToRef |
|
self.sentToTokens = sentToTokens |
|
print('index created.') |
|
|
|
def getRefIds(self, image_ids=[], cat_ids=[], ref_ids=[], split=''): |
|
image_ids = image_ids if type(image_ids) == list else [image_ids] |
|
cat_ids = cat_ids if type(cat_ids) == list else [cat_ids] |
|
ref_ids = ref_ids if type(ref_ids) == list else [ref_ids] |
|
|
|
if len(image_ids) == len(cat_ids) == len(ref_ids) == len(split) == 0: |
|
refs = self.data['refs'] |
|
else: |
|
if not len(image_ids) == 0: |
|
refs = [self.imgToRefs[image_id] for image_id in image_ids] |
|
else: |
|
refs = self.data['refs'] |
|
if not len(cat_ids) == 0: |
|
refs = [ref for ref in refs if ref['category_id'] in cat_ids] |
|
if not len(ref_ids) == 0: |
|
refs = [ref for ref in refs if ref['ref_id'] in ref_ids] |
|
if not len(split) == 0: |
|
if split in ['testA', 'testB', 'testC']: |
|
refs = [ref for ref in refs if split[-1] in ref['split']] |
|
elif split in ['testAB', 'testBC', 'testAC']: |
|
refs = [ref for ref in refs if ref['split'] == split] |
|
elif split == 'test': |
|
refs = [ref for ref in refs if 'test' in ref['split']] |
|
elif split == 'train' or split == 'val': |
|
refs = [ref for ref in refs if ref['split'] == split] |
|
else: |
|
print('No such split [%s]' % split) |
|
sys.exit() |
|
ref_ids = [ref['ref_id'] for ref in refs] |
|
return ref_ids |
|
|
|
def getAnnIds(self, image_ids=[], cat_ids=[], ref_ids=[]): |
|
image_ids = image_ids if type(image_ids) == list else [image_ids] |
|
cat_ids = cat_ids if type(cat_ids) == list else [cat_ids] |
|
ref_ids = ref_ids if type(ref_ids) == list else [ref_ids] |
|
|
|
if len(image_ids) == len(cat_ids) == len(ref_ids) == 0: |
|
ann_ids = [ann['id'] for ann in self.data['annotations']] |
|
else: |
|
if not len(image_ids) == 0: |
|
lists = [self.imgToAnns[image_id] for image_id in image_ids if |
|
image_id in self.imgToAnns] |
|
anns = list(itertools.chain.from_iterable(lists)) |
|
else: |
|
anns = self.data['annotations'] |
|
if not len(cat_ids) == 0: |
|
anns = [ann for ann in anns if ann['category_id'] in cat_ids] |
|
ann_ids = [ann['id'] for ann in anns] |
|
if not len(ref_ids) == 0: |
|
ids = set(ann_ids).intersection(set([self.Refs[ref_id]['ann_id'] for ref_id in ref_ids])) |
|
return ann_ids |
|
|
|
def getImgIds(self, ref_ids=[]): |
|
ref_ids = ref_ids if type(ref_ids) == list else [ref_ids] |
|
|
|
if not len(ref_ids) == 0: |
|
image_ids = list(set([self.Refs[ref_id]['image_id'] for ref_id in ref_ids])) |
|
else: |
|
image_ids = self.Imgs.keys() |
|
return image_ids |
|
|
|
def getCatIds(self): |
|
return self.Cats.keys() |
|
|
|
def loadRefs(self, ref_ids=[]): |
|
if type(ref_ids) == list: |
|
return [self.Refs[ref_id] for ref_id in ref_ids] |
|
elif type(ref_ids) == int: |
|
return [self.Refs[ref_ids]] |
|
|
|
def loadAnns(self, ann_ids=[]): |
|
if type(ann_ids) == list: |
|
return [self.Anns[ann_id] for ann_id in ann_ids] |
|
elif type(ann_ids) == int or type(ann_ids) == unicode: |
|
return [self.Anns[ann_ids]] |
|
|
|
def loadImgs(self, image_ids=[]): |
|
if type(image_ids) == list: |
|
return [self.Imgs[image_id] for image_id in image_ids] |
|
elif type(image_ids) == int: |
|
return [self.Imgs[image_ids]] |
|
|
|
def loadCats(self, cat_ids=[]): |
|
if type(cat_ids) == list: |
|
return [self.Cats[cat_id] for cat_id in cat_ids] |
|
elif type(cat_ids) == int: |
|
return [self.Cats[cat_ids]] |
|
|
|
def getRefBox(self, ref_id): |
|
ref = self.Refs[ref_id] |
|
ann = self.refToAnn[ref_id] |
|
return ann['bbox'] |
|
|
|
def showRef(self, ref, seg_box='seg'): |
|
ax = plt.gca() |
|
|
|
image = self.Imgs[ref['image_id']] |
|
I = io.imread(osp.join(self.IMAGE_DIR, image['file_name'])) |
|
ax.imshow(I) |
|
|
|
for sid, sent in enumerate(ref['sentences']): |
|
print('%s. %s' % (sid + 1, sent['sent'])) |
|
|
|
if seg_box == 'seg': |
|
ann_id = ref['ann_id'] |
|
ann = self.Anns[ann_id] |
|
polygons = [] |
|
color = [] |
|
c = 'none' |
|
if type(ann['segmentation'][0]) == list: |
|
|
|
for seg in ann['segmentation']: |
|
poly = np.array(seg).reshape((len(seg) / 2, 2)) |
|
polygons.append(Polygon(poly, True, alpha=0.4)) |
|
color.append(c) |
|
p = PatchCollection(polygons, facecolors=color, edgecolors=(1, 1, 0, 0), linewidths=3, alpha=1) |
|
ax.add_collection(p) |
|
p = PatchCollection(polygons, facecolors=color, edgecolors=(1, 0, 0, 0), linewidths=1, alpha=1) |
|
ax.add_collection(p) |
|
else: |
|
|
|
rle = ann['segmentation'] |
|
m = mask.decode(rle) |
|
img = np.ones((m.shape[0], m.shape[1], 3)) |
|
color_mask = np.array([2.0, 166.0, 101.0]) / 255 |
|
for i in range(3): |
|
img[:, :, i] = color_mask[i] |
|
ax.imshow(np.dstack((img, m * 0.5))) |
|
|
|
elif seg_box == 'box': |
|
ann_id = ref['ann_id'] |
|
ann = self.Anns[ann_id] |
|
bbox = self.getRefBox(ref['ref_id']) |
|
box_plot = Rectangle((bbox[0], bbox[1]), bbox[2], bbox[3], fill=False, edgecolor='green', linewidth=3) |
|
ax.add_patch(box_plot) |
|
|
|
def getMask(self, ref): |
|
|
|
ann = self.refToAnn[ref['ref_id']] |
|
image = self.Imgs[ref['image_id']] |
|
|
|
if type(ann['segmentation'][0]) == list: |
|
rle = mask.frPyObjects(ann['segmentation'], image['height'], image['width']) |
|
else: |
|
rle = ann['segmentation'] |
|
|
|
m = mask.decode(rle) |
|
m = np.sum(m, axis=2) |
|
m = m.astype(np.uint8) |
|
|
|
area = sum(mask.area(rle)) |
|
return {'mask': m, 'area': area} |
|
|
|
|
|
def showMask(self, ref): |
|
M = self.getMask(ref) |
|
msk = M['mask'] |
|
ax = plt.gca() |
|
ax.imshow(msk) |
|
|
|
|
|
if __name__ == '__main__': |
|
refer = REFER(dataset='refcocog', splitBy='google') |
|
ref_ids = refer.getRefIds() |
|
|
|
ref_ids = refer.getRefIds(split='train') |
|
print('There are %s training referred objects.' % len(ref_ids)) |
|
|
|
for ref_id in ref_ids: |
|
ref = refer.loadRefs(ref_id)[0] |
|
if len(ref['sentences']) < 2: |
|
continue |
|
print('The label is %s.' % refer.Cats[ref['category_id']]) |
|
plt.figure() |
|
refer.showRef(ref, seg_box='box') |
|
plt.show() |
|
|
|
|