|
|
|
import gradio as gr |
|
import subprocess |
|
|
|
import os |
|
print("A") |
|
|
|
|
|
|
|
print("B") |
|
|
|
print("C") |
|
|
|
os.system('wget https://huggingface.co/yxchng/elia_refcoco/resolve/main/model_best_refcoco_0508.pth') |
|
image_path = './image001.png' |
|
sentence = 'spoon on the dish' |
|
weights = 'model_best_refcoco_0508.pth' |
|
device = 'cpu' |
|
|
|
|
|
from PIL import Image |
|
import torchvision.transforms as T |
|
import numpy as np |
|
import datetime |
|
import os |
|
import time |
|
|
|
import torch |
|
import torch.utils.data |
|
from torch import nn |
|
|
|
from bert.multimodal_bert import MultiModalBert |
|
import torchvision |
|
|
|
from lib import multimodal_segmentation_ppm |
|
|
|
import utils |
|
|
|
import numpy as np |
|
from PIL import Image |
|
import torch.nn.functional as F |
|
|
|
from modeling.MaskFormerModel import MaskFormerHead |
|
from addict import Dict |
|
|
|
import cv2 |
|
import textwrap |
|
|
|
class WrapperModel(nn.Module): |
|
def __init__(self, image_model, language_model, classifier) : |
|
super(WrapperModel, self).__init__() |
|
self.image_model = image_model |
|
self.language_model = language_model |
|
self.classifier = classifier |
|
|
|
config = Dict({ |
|
"architectures": [ |
|
"BertForMaskedLM" |
|
], |
|
"attention_probs_dropout_prob": 0.1, |
|
"gradient_checkpointing": False, |
|
"hidden_act": "gelu", |
|
"hidden_dropout_prob": 0.1, |
|
"hidden_size": 512, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 3072, |
|
"layer_norm_eps": 1e-12, |
|
|
|
"model_type": "bert", |
|
"num_attention_heads": 8, |
|
"num_hidden_layers": 8, |
|
"pad_token_id": 0, |
|
"position_embedding_type": "absolute", |
|
"transformers_version": "4.6.0.dev0", |
|
"type_vocab_size": 2, |
|
"use_cache": True, |
|
"vocab_size": 30522 |
|
}) |
|
|
|
|
|
|
|
def _get_binary_mask(self, target): |
|
|
|
y, x = target.size() |
|
target_onehot = torch.zeros(self.num_classes + 1, y, x) |
|
target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1) |
|
return target_onehot[1:] |
|
|
|
def semantic_inference(self, mask_cls, mask_pred): |
|
mask_cls = F.softmax(mask_cls, dim=1)[...,1:] |
|
mask_pred = mask_pred.sigmoid() |
|
semseg = torch.einsum("bqc,bqhw->bchw", mask_cls, mask_pred) |
|
return semseg |
|
|
|
def forward(self, image, sentences, attentions): |
|
print(image.sum(), sentences.sum(), attentions.sum()) |
|
input_shape = image.shape[-2:] |
|
l_mask = attentions.unsqueeze(dim=-1) |
|
|
|
i0, Wh, Ww = self.image_model.forward_stem(image) |
|
l0, extended_attention_mask = self.language_model.forward_stem(sentences, attentions) |
|
|
|
i1 = self.image_model.forward_stage1(i0, Wh, Ww) |
|
l1 = self.language_model.forward_stage1(l0, extended_attention_mask) |
|
i1_residual, H, W, i1_temp, Wh, Ww = self.image_model.forward_pwam1(i1, Wh, Ww, l1, l_mask) |
|
l1_residual, l1 = self.language_model.forward_pwam1(i1, l1, extended_attention_mask) |
|
i1 = i1_temp |
|
|
|
i2 = self.image_model.forward_stage2(i1, Wh, Ww) |
|
l2 = self.language_model.forward_stage2(l1, extended_attention_mask) |
|
i2_residual, H, W, i2_temp, Wh, Ww = self.image_model.forward_pwam2(i2, Wh, Ww, l2, l_mask) |
|
l2_residual, l2 = self.language_model.forward_pwam2(i2, l2, extended_attention_mask) |
|
i2 = i2_temp |
|
|
|
i3 = self.image_model.forward_stage3(i2, Wh, Ww) |
|
l3 = self.language_model.forward_stage3(l2, extended_attention_mask) |
|
i3_residual, H, W, i3_temp, Wh, Ww = self.image_model.forward_pwam3(i3, Wh, Ww, l3, l_mask) |
|
l3_residual, l3 = self.language_model.forward_pwam3(i3, l3, extended_attention_mask) |
|
i3 = i3_temp |
|
|
|
i4 = self.image_model.forward_stage4(i3, Wh, Ww) |
|
l4 = self.language_model.forward_stage4(l3, extended_attention_mask) |
|
i4_residual, H, W, i4_temp, Wh, Ww = self.image_model.forward_pwam4(i4, Wh, Ww, l4, l_mask) |
|
l4_residual, l4 = self.language_model.forward_pwam4(i4, l4, extended_attention_mask) |
|
i4 = i4_temp |
|
|
|
|
|
|
|
|
|
outputs = {} |
|
outputs['s1'] = i1_residual |
|
outputs['s2'] = i2_residual |
|
outputs['s3'] = i3_residual |
|
outputs['s4'] = i4_residual |
|
|
|
predictions = self.classifier(outputs) |
|
return predictions |
|
|
|
|
|
|
|
|
|
from bert.tokenization_bert import BertTokenizer |
|
import torch |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class args: |
|
swin_type = 'base' |
|
window12 = True |
|
mha = '' |
|
fusion_drop = 0.0 |
|
|
|
|
|
|
|
single_model = multimodal_segmentation_ppm.__dict__['lavt'](pretrained='',args=args) |
|
single_model.to(device) |
|
model_class = MultiModalBert |
|
single_bert_model = model_class.from_pretrained('bert-base-uncased', embed_dim=single_model.backbone.embed_dim) |
|
single_bert_model.pooler = None |
|
|
|
input_shape = dict() |
|
input_shape['s1'] = Dict({'channel': 128, 'stride': 4}) |
|
input_shape['s2'] = Dict({'channel': 256, 'stride': 8}) |
|
input_shape['s3'] = Dict({'channel': 512, 'stride': 16}) |
|
input_shape['s4'] = Dict({'channel': 1024, 'stride': 32}) |
|
|
|
|
|
|
|
cfg = Dict() |
|
cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4 |
|
cfg.MODEL.MASK_FORMER.DROPOUT = 0.0 |
|
cfg.MODEL.MASK_FORMER.NHEADS = 8 |
|
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 4 |
|
cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM = 256 |
|
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256 |
|
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["s1", "s2", "s3", "s4"] |
|
|
|
cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1 |
|
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256 |
|
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 1 |
|
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048 |
|
cfg.MODEL.MASK_FORMER.DEC_LAYERS = 10 |
|
cfg.MODEL.MASK_FORMER.PRE_NORM = False |
|
|
|
|
|
maskformer_head = MaskFormerHead(cfg, input_shape) |
|
|
|
|
|
model = WrapperModel(single_model.backbone, single_bert_model, maskformer_head) |
|
|
|
|
|
|
|
checkpoint = torch.load(weights, map_location='cpu') |
|
|
|
model.load_state_dict(checkpoint, strict=False) |
|
model.to(device) |
|
model.eval() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def overlay_davis(image, mask, colors=[[0, 0, 0], [255, 0, 0]], cscale=1, alpha=0.4): |
|
from scipy.ndimage.morphology import binary_dilation |
|
|
|
colors = np.reshape(colors, (-1, 3)) |
|
colors = np.atleast_2d(colors) * cscale |
|
|
|
im_overlay = image.copy() |
|
object_ids = np.unique(mask) |
|
|
|
for object_id in object_ids[1:]: |
|
|
|
foreground = image*alpha + np.ones(image.shape)*(1-alpha) * np.array(colors[object_id]) |
|
binary_mask = mask == object_id |
|
|
|
|
|
im_overlay[binary_mask] = foreground[binary_mask] |
|
|
|
|
|
countours = binary_dilation(binary_mask) ^ binary_mask |
|
|
|
im_overlay[countours, :] = 0 |
|
|
|
return im_overlay.astype(image.dtype) |
|
|
|
|
|
def run_model(img, sentence): |
|
|
|
|
|
img = Image.fromarray(img) |
|
img = img.convert("RGB") |
|
|
|
img_ndarray = np.array(img) |
|
original_w, original_h = img.size |
|
|
|
image_transforms = T.Compose( |
|
[ |
|
T.Resize((480, 480)), |
|
T.ToTensor(), |
|
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
] |
|
) |
|
|
|
img = image_transforms(img).unsqueeze(0) |
|
img = img.to(device) |
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
sentence_tokenized = tokenizer.encode(text=sentence, add_special_tokens=True) |
|
sentence_tokenized = sentence_tokenized[:20] |
|
|
|
padded_sent_toks = [0] * 20 |
|
padded_sent_toks[:len(sentence_tokenized)] = sentence_tokenized |
|
|
|
attention_mask = [0] * 20 |
|
attention_mask[:len(sentence_tokenized)] = [1]*len(sentence_tokenized) |
|
|
|
padded_sent_toks = torch.tensor(padded_sent_toks).unsqueeze(0) |
|
attention_mask = torch.tensor(attention_mask).unsqueeze(0) |
|
padded_sent_toks = padded_sent_toks.to(device) |
|
attention_mask = attention_mask.to(device) |
|
|
|
output = model(img, padded_sent_toks, attention_mask)[0] |
|
|
|
|
|
mask_cls_results = output["pred_logits"] |
|
mask_pred_results = output["pred_masks"] |
|
|
|
target_shape = img_ndarray.shape[:2] |
|
|
|
mask_pred_results = F.interpolate(mask_pred_results, size=(480,480), mode='bilinear', align_corners=True) |
|
|
|
pred_masks = model.semantic_inference(mask_cls_results, mask_pred_results) |
|
|
|
output = torch.nn.functional.interpolate(pred_masks, target_shape) |
|
output = (output > 0.5).data.cpu().numpy() |
|
|
|
output = output.astype(np.uint8) |
|
|
|
print(img_ndarray.shape, output.shape) |
|
visualization = overlay_davis(img_ndarray, output[0][0]) |
|
visualization = Image.fromarray(visualization) |
|
|
|
|
|
|
|
|
|
return visualization |
|
|
|
|
|
|
|
|
|
demo = gr.Interface(run_model, inputs=[gr.Image(), "text"], outputs=["image"]) |
|
demo.launch() |
|
|
|
|