elia / mask2former_utils /point_features.py
yxchng
add files
a166479
raw
history blame
5.38 kB
import torch
from torch.nn import functional as F
def point_sample(input, point_coords, **kwargs):
"""
A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors.
Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside
[0, 1] x [0, 1] square.
Args:
input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid.
point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains
[0, 1] x [0, 1] normalized point coordinates.
Returns:
output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains
features for points in `point_coords`. The features are obtained via bilinear
interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`.
"""
add_dim = False
if point_coords.dim() == 3:
add_dim = True
point_coords = point_coords.unsqueeze(2) # [c, self.num_points, 1, 2]
output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs) # [c, 1, self.num_points, 1]
if add_dim:
output = output.squeeze(3)
return output # [c, 1, self.num_points]
def get_uncertain_point_coords_with_randomness(
coarse_logits, uncertainty_func, num_points, oversample_ratio, importance_sample_ratio
):
"""
Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The unceratinties
are calculated for each point using 'uncertainty_func' function that takes point's logit
prediction as input.
See PointRend paper for details.
Args:
coarse_logits (Tensor): A tensor of shape (N, C, Hmask, Wmask) or (N, 1, Hmask, Wmask) for
class-specific or class-agnostic prediction.
uncertainty_func: A function that takes a Tensor of shape (N, C, P) or (N, 1, P) that
contains logit predictions for P points and returns their uncertainties as a Tensor of
shape (N, 1, P).
num_points (int): The number of points P to sample.
oversample_ratio (int): Oversampling parameter.
importance_sample_ratio (float): Ratio of points that are sampled via importnace sampling.
Returns:
point_coords (Tensor): A tensor of shape (N, P, 2) that contains the coordinates of P
sampled points.
"""
assert oversample_ratio >= 1
assert importance_sample_ratio <= 1 and importance_sample_ratio >= 0
num_boxes = coarse_logits.shape[0]
num_sampled = int(num_points * oversample_ratio)
point_coords = torch.rand(num_boxes, num_sampled, 2, device=coarse_logits.device)
point_logits = point_sample(coarse_logits, point_coords, align_corners=False)
# It is crucial to calculate uncertainty based on the sampled prediction value for the points.
# Calculating uncertainties of the coarse predictions first and sampling them for points leads
# to incorrect results.
# To illustrate this: assume uncertainty_func(logits)=-abs(logits), a sampled point between
# two coarse predictions with -1 and 1 logits has 0 logits, and therefore 0 uncertainty value.
# However, if we calculate uncertainties for the coarse predictions first,
# both will have -1 uncertainty, and the sampled point will get -1 uncertainty.
point_uncertainties = uncertainty_func(point_logits)
num_uncertain_points = int(importance_sample_ratio * num_points)
num_random_points = num_points - num_uncertain_points
idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
shift = num_sampled * torch.arange(num_boxes, dtype=torch.long, device=coarse_logits.device)
idx += shift[:, None]
point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view(
num_boxes, num_uncertain_points, 2
)
if num_random_points > 0:
point_coords = torch.cat(
[
point_coords,
torch.rand(num_boxes, num_random_points, 2, device=coarse_logits.device),
],
dim=1,
)
return point_coords
def get_uncertain_point_coords_on_grid(uncertainty_map, num_points):
"""
Find `num_points` most uncertain points from `uncertainty_map` grid.
Args:
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty
values for a set of points on a regular H x W grid.
num_points (int): The number of points P to select.
Returns:
point_indices (Tensor): A tensor of shape (N, P) that contains indices from
[0, H x W) of the most uncertain points.
point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized
coordinates of the most uncertain points from the H x W grid.
"""
R, _, H, W = uncertainty_map.shape
h_step = 1.0 / float(H)
w_step = 1.0 / float(W)
num_points = min(H * W, num_points)
point_indices = torch.topk(uncertainty_map.view(R, H * W), k=num_points, dim=1)[1]
point_coords = torch.zeros(R, num_points, 2, dtype=torch.float, device=uncertainty_map.device)
point_coords[:, :, 0] = w_step / 2.0 + (point_indices % W).to(torch.float) * w_step
point_coords[:, :, 1] = h_step / 2.0 + (point_indices // W).to(torch.float) * h_step
return point_indices, point_coords