|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch BERT model. """ |
|
|
|
|
|
import logging |
|
import math |
|
import os |
|
import warnings |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss, MSELoss |
|
|
|
from .activations import gelu, gelu_new, swish |
|
from .configuration_bert import BertConfig |
|
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable |
|
from .modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
_TOKENIZER_FOR_DOC = "BertTokenizer" |
|
|
|
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"bert-base-uncased", |
|
"bert-large-uncased", |
|
"bert-base-cased", |
|
"bert-large-cased", |
|
"bert-base-multilingual-uncased", |
|
"bert-base-multilingual-cased", |
|
"bert-base-chinese", |
|
"bert-base-german-cased", |
|
"bert-large-uncased-whole-word-masking", |
|
"bert-large-cased-whole-word-masking", |
|
"bert-large-uncased-whole-word-masking-finetuned-squad", |
|
"bert-large-cased-whole-word-masking-finetuned-squad", |
|
"bert-base-cased-finetuned-mrpc", |
|
"bert-base-german-dbmdz-cased", |
|
"bert-base-german-dbmdz-uncased", |
|
"cl-tohoku/bert-base-japanese", |
|
"cl-tohoku/bert-base-japanese-whole-word-masking", |
|
"cl-tohoku/bert-base-japanese-char", |
|
"cl-tohoku/bert-base-japanese-char-whole-word-masking", |
|
"TurkuNLP/bert-base-finnish-cased-v1", |
|
"TurkuNLP/bert-base-finnish-uncased-v1", |
|
"wietsedv/bert-base-dutch-cased", |
|
|
|
] |
|
|
|
|
|
def load_tf_weights_in_bert(model, config, tf_checkpoint_path): |
|
""" Load tf checkpoints in a pytorch model. |
|
""" |
|
try: |
|
import re |
|
import numpy as np |
|
import tensorflow as tf |
|
except ImportError: |
|
logger.error( |
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " |
|
"https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
tf_path = os.path.abspath(tf_checkpoint_path) |
|
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) |
|
|
|
init_vars = tf.train.list_variables(tf_path) |
|
names = [] |
|
arrays = [] |
|
for name, shape in init_vars: |
|
logger.info("Loading TF weight {} with shape {}".format(name, shape)) |
|
array = tf.train.load_variable(tf_path, name) |
|
names.append(name) |
|
arrays.append(array) |
|
|
|
for name, array in zip(names, arrays): |
|
name = name.split("/") |
|
|
|
|
|
if any( |
|
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] |
|
for n in name |
|
): |
|
logger.info("Skipping {}".format("/".join(name))) |
|
continue |
|
pointer = model |
|
for m_name in name: |
|
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): |
|
scope_names = re.split(r"_(\d+)", m_name) |
|
else: |
|
scope_names = [m_name] |
|
if scope_names[0] == "kernel" or scope_names[0] == "gamma": |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": |
|
pointer = getattr(pointer, "bias") |
|
elif scope_names[0] == "output_weights": |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "squad": |
|
pointer = getattr(pointer, "classifier") |
|
else: |
|
try: |
|
pointer = getattr(pointer, scope_names[0]) |
|
except AttributeError: |
|
logger.info("Skipping {}".format("/".join(name))) |
|
continue |
|
if len(scope_names) >= 2: |
|
num = int(scope_names[1]) |
|
pointer = pointer[num] |
|
if m_name[-11:] == "_embeddings": |
|
pointer = getattr(pointer, "weight") |
|
elif m_name == "kernel": |
|
array = np.transpose(array) |
|
try: |
|
assert pointer.shape == array.shape |
|
except AssertionError as e: |
|
e.args += (pointer.shape, array.shape) |
|
raise |
|
logger.info("Initialize PyTorch weight {}".format(name)) |
|
pointer.data = torch.from_numpy(array) |
|
return model |
|
|
|
|
|
def mish(x): |
|
return x * torch.tanh(nn.functional.softplus(x)) |
|
|
|
|
|
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new, "mish": mish} |
|
|
|
|
|
BertLayerNorm = torch.nn.LayerNorm |
|
|
|
|
|
class BertEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
if position_ids is None: |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0).expand(input_shape) |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
position_embeddings = self.position_embeddings(position_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + position_embeddings + token_type_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class BertSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
"The hidden size (%d) is not a multiple of the number of attention " |
|
"heads (%d)" % (config.hidden_size, config.num_attention_heads) |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
output_attentions=False, |
|
): |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
if encoder_hidden_states is not None: |
|
mixed_key_layer = self.key(encoder_hidden_states) |
|
mixed_value_layer = self.value(encoder_hidden_states) |
|
attention_mask = encoder_attention_mask |
|
else: |
|
mixed_key_layer = self.key(hidden_states) |
|
mixed_value_layer = self.value(hidden_states) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
key_layer = self.transpose_for_scores(mixed_key_layer) |
|
value_layer = self.transpose_for_scores(mixed_value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
return outputs |
|
|
|
|
|
class BertSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.self = BertSelfAttention(config) |
|
self.output = BertSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
output_attentions=False, |
|
): |
|
self_outputs = self.self( |
|
hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class BertIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.attention = BertAttention(config) |
|
self.is_decoder = config.is_decoder |
|
if self.is_decoder: |
|
self.crossattention = BertAttention(config) |
|
self.intermediate = BertIntermediate(config) |
|
self.output = BertOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
output_attentions=False, |
|
): |
|
self_attention_outputs = self.attention( |
|
hidden_states, attention_mask, head_mask, output_attentions=output_attentions, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:] |
|
|
|
if self.is_decoder and encoder_hidden_states is not None: |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = outputs + cross_attention_outputs[1:] |
|
|
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
outputs = (layer_output,) + outputs |
|
return outputs |
|
|
|
|
|
class BertEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
): |
|
all_hidden_states = () |
|
all_attentions = () |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if getattr(self.config, "gradient_checkpointing", False): |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
head_mask[i], |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
head_mask[i], |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
output_attentions, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
outputs = (hidden_states,) |
|
if output_hidden_states: |
|
outputs = outputs + (all_hidden_states,) |
|
if output_attentions: |
|
outputs = outputs + (all_attentions,) |
|
return outputs |
|
|
|
|
|
class BertPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class BertPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if isinstance(config.hidden_act, str): |
|
self.transform_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.transform_act_fn = config.hidden_act |
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.transform = BertPredictionHeadTransform(config) |
|
|
|
|
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
|
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertOnlyMLMHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = BertLMPredictionHead(config) |
|
|
|
def forward(self, sequence_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
return prediction_scores |
|
|
|
|
|
class BertOnlyNSPHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, pooled_output): |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return seq_relationship_score |
|
|
|
|
|
class BertPreTrainingHeads(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = BertLMPredictionHead(config) |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, sequence_output, pooled_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return prediction_scores, seq_relationship_score |
|
|
|
|
|
class BertPreTrainedModel(PreTrainedModel): |
|
""" An abstract class to handle weights initialization and |
|
a simple interface for downloading and loading pretrained models. |
|
""" |
|
|
|
config_class = BertConfig |
|
load_tf_weights = load_tf_weights_in_bert |
|
base_model_prefix = "bert" |
|
|
|
def _init_weights(self, module): |
|
""" Initialize the weights """ |
|
if isinstance(module, (nn.Linear, nn.Embedding)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
elif isinstance(module, BertLayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
|
|
BERT_START_DOCSTRING = r""" |
|
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general |
|
usage and behavior. |
|
|
|
Parameters: |
|
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the configuration. |
|
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. |
|
""" |
|
|
|
BERT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using :class:`transformers.BertTokenizer`. |
|
See :func:`transformers.PreTrainedTokenizer.encode` and |
|
:func:`transformers.PreTrainedTokenizer.__call__` for details. |
|
|
|
`What are input IDs? <../glossary.html#input-ids>`__ |
|
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`): |
|
Mask to avoid performing attention on padding token indices. |
|
Mask values selected in ``[0, 1]``: |
|
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. |
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__ |
|
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`): |
|
Segment token indices to indicate first and second portions of the inputs. |
|
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` |
|
corresponds to a `sentence B` token |
|
|
|
`What are token type IDs? <../glossary.html#token-type-ids>`_ |
|
position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`): |
|
Indices of positions of each input sequence tokens in the position embeddings. |
|
Selected in the range ``[0, config.max_position_embeddings - 1]``. |
|
|
|
`What are position IDs? <../glossary.html#position-ids>`_ |
|
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`): |
|
Mask to nullify selected heads of the self-attention modules. |
|
Mask values selected in ``[0, 1]``: |
|
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. |
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`): |
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention |
|
if the model is configured as a decoder. |
|
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask |
|
is used in the cross-attention if the model is configured as a decoder. |
|
Mask values selected in ``[0, 1]``: |
|
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. |
|
output_attentions (:obj:`bool`, `optional`, defaults to :obj:`None`): |
|
If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", |
|
BERT_START_DOCSTRING, |
|
) |
|
class BertModel(BertPreTrainedModel): |
|
""" |
|
|
|
The model can behave as an encoder (with only self-attention) as well |
|
as a decoder, in which case a layer of cross-attention is added between |
|
the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani, |
|
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. |
|
|
|
To behave as an decoder the model needs to be initialized with the |
|
:obj:`is_decoder` argument of the configuration set to :obj:`True`; an |
|
:obj:`encoder_hidden_states` is expected as an input to the forward pass. |
|
|
|
.. _`Attention is all you need`: |
|
https://arxiv.org/abs/1706.03762 |
|
|
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = BertEmbeddings(config) |
|
self.encoder = BertEncoder(config) |
|
self.pooler = BertPooler(config) |
|
|
|
self.init_weights() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" Prunes heads of the model. |
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} |
|
See base class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) |
|
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased") |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
): |
|
r""" |
|
Return: |
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: |
|
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): |
|
Last layer hidden-state of the first token of the sequence (classification token) |
|
further processed by a Linear layer and a Tanh activation function. The Linear |
|
layer weights are trained from the next sentence prediction (classification) |
|
objective during pre-training. |
|
|
|
This output is usually *not* a good summary |
|
of the semantic content of the input, you're often better with averaging or pooling |
|
the sequence of hidden-states for the whole input sequence. |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape |
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(input_shape, device=device) |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
outputs = (sequence_output, pooled_output,) + encoder_outputs[ |
|
1: |
|
] |
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with two heads on top as done during the pre-training: a `masked language modeling` head and |
|
a `next sentence prediction (classification)` head. """, |
|
BERT_START_DOCSTRING, |
|
) |
|
class BertForPreTraining(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = BertModel(config) |
|
self.cls = BertPreTrainingHeads(config) |
|
|
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
next_sentence_label=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
**kwargs |
|
): |
|
r""" |
|
labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`, defaults to :obj:`None`): |
|
Labels for computing the masked language modeling loss. |
|
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) |
|
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels |
|
in ``[0, ..., config.vocab_size]`` |
|
next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`, defaults to :obj:`None`): |
|
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) |
|
Indices should be in ``[0, 1]``. |
|
``0`` indicates sequence B is a continuation of sequence A, |
|
``1`` indicates sequence B is a random sequence. |
|
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): |
|
Used to hide legacy arguments that have been deprecated. |
|
|
|
Returns: |
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: |
|
loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: |
|
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. |
|
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): |
|
Prediction scores of the next sequence prediction (classification) head (scores of True/False |
|
continuation before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape |
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
|
|
|
|
Examples:: |
|
|
|
>>> from transformers import BertTokenizer, BertForPreTraining |
|
>>> import torch |
|
|
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
>>> model = BertForPreTraining.from_pretrained('bert-base-uncased') |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> prediction_scores, seq_relationship_scores = outputs[:2] |
|
|
|
""" |
|
if "masked_lm_labels" in kwargs: |
|
warnings.warn( |
|
"The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.", |
|
DeprecationWarning, |
|
) |
|
labels = kwargs.pop("masked_lm_labels") |
|
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}." |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
sequence_output, pooled_output = outputs[:2] |
|
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) |
|
|
|
outputs = (prediction_scores, seq_relationship_score,) + outputs[ |
|
2: |
|
] |
|
|
|
if labels is not None and next_sentence_label is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) |
|
total_loss = masked_lm_loss + next_sentence_loss |
|
outputs = (total_loss,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with a `language modeling` head on top for CLM fine-tuning. """, BERT_START_DOCSTRING |
|
) |
|
class BertLMHeadModel(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
assert config.is_decoder, "If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True`." |
|
|
|
self.bert = BertModel(config) |
|
self.cls = BertOnlyMLMHead(config) |
|
|
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
**kwargs |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): |
|
Labels for computing the left-to-right language modeling loss (next word prediction). |
|
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) |
|
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels |
|
in ``[0, ..., config.vocab_size]`` |
|
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): |
|
Used to hide legacy arguments that have been deprecated. |
|
|
|
Returns: |
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: |
|
ltr_lm_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): |
|
Next token prediction loss. |
|
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape |
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
|
|
Example:: |
|
|
|
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig |
|
>>> import torch |
|
|
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased') |
|
>>> config = BertConfig.from_pretrained("bert-base-cased") |
|
>>> config.is_decoder = True |
|
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config) |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple |
|
""" |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
outputs = (prediction_scores,) + outputs[2:] |
|
|
|
if labels is not None: |
|
|
|
prediction_scores = prediction_scores[:, :-1, :].contiguous() |
|
labels = labels[:, 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
ltr_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
outputs = (ltr_lm_loss,) + outputs |
|
|
|
return outputs |
|
|
|
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): |
|
input_shape = input_ids.shape |
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = input_ids.new_ones(input_shape) |
|
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask} |
|
|
|
|
|
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING) |
|
class BertForMaskedLM(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
assert ( |
|
not config.is_decoder |
|
), "If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for bi-directional self-attention." |
|
|
|
self.bert = BertModel(config) |
|
self.cls = BertOnlyMLMHead(config) |
|
|
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) |
|
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased") |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
**kwargs |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): |
|
Labels for computing the masked language modeling loss. |
|
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) |
|
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels |
|
in ``[0, ..., config.vocab_size]`` |
|
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): |
|
Used to hide legacy arguments that have been deprecated. |
|
|
|
Returns: |
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: |
|
masked_lm_loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: |
|
Masked language modeling loss. |
|
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape |
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
if "masked_lm_labels" in kwargs: |
|
warnings.warn( |
|
"The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.", |
|
DeprecationWarning, |
|
) |
|
labels = kwargs.pop("masked_lm_labels") |
|
assert "lm_labels" not in kwargs, "Use `BertWithLMHead` for autoregressive language modeling task." |
|
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}." |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
outputs = (prediction_scores,) + outputs[2:] |
|
|
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
outputs = (masked_lm_loss,) + outputs |
|
|
|
return outputs |
|
|
|
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): |
|
input_shape = input_ids.shape |
|
effective_batch_size = input_shape[0] |
|
|
|
|
|
assert self.config.pad_token_id is not None, "The PAD token should be defined for generation" |
|
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) |
|
dummy_token = torch.full( |
|
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device |
|
) |
|
input_ids = torch.cat([input_ids, dummy_token], dim=1) |
|
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask} |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with a `next sentence prediction (classification)` head on top. """, BERT_START_DOCSTRING, |
|
) |
|
class BertForNextSentencePrediction(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = BertModel(config) |
|
self.cls = BertOnlyNSPHead(config) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
next_sentence_label=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
): |
|
r""" |
|
next_sentence_label (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): |
|
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) |
|
Indices should be in ``[0, 1]``. |
|
``0`` indicates sequence B is a continuation of sequence A, |
|
``1`` indicates sequence B is a random sequence. |
|
|
|
Returns: |
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: |
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`next_sentence_label` is provided): |
|
Next sequence prediction (classification) loss. |
|
seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): |
|
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape |
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
|
|
Examples:: |
|
|
|
>>> from transformers import BertTokenizer, BertForNextSentencePrediction |
|
>>> import torch |
|
|
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
>>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased') |
|
|
|
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." |
|
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." |
|
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt') |
|
|
|
>>> loss, logits = model(**encoding, next_sentence_label=torch.LongTensor([1])) |
|
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random |
|
""" |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
seq_relationship_score = self.cls(pooled_output) |
|
|
|
outputs = (seq_relationship_score,) + outputs[2:] |
|
if next_sentence_label is not None: |
|
loss_fct = CrossEntropyLoss() |
|
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) |
|
outputs = (next_sentence_loss,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of |
|
the pooled output) e.g. for GLUE tasks. """, |
|
BERT_START_DOCSTRING, |
|
) |
|
class BertForSequenceClassification(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.bert = BertModel(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) |
|
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased") |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): |
|
Labels for computing the sequence classification/regression loss. |
|
Indices should be in :obj:`[0, ..., config.num_labels - 1]`. |
|
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), |
|
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
Returns: |
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: |
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): |
|
Classification (or regression if config.num_labels==1) loss. |
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): |
|
Classification (or regression if config.num_labels==1) scores (before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape |
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
outputs = (logits,) + outputs[2:] |
|
|
|
if labels is not None: |
|
if self.num_labels == 1: |
|
|
|
loss_fct = MSELoss() |
|
loss = loss_fct(logits.view(-1), labels.view(-1)) |
|
else: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
outputs = (loss,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with a multiple choice classification head on top (a linear layer on top of |
|
the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, |
|
BERT_START_DOCSTRING, |
|
) |
|
class BertForMultipleChoice(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = BertModel(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, 1) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)")) |
|
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased") |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): |
|
Labels for computing the multiple choice classification loss. |
|
Indices should be in ``[0, ..., num_choices-1]`` where `num_choices` is the size of the second dimension |
|
of the input tensors. (see `input_ids` above) |
|
|
|
Returns: |
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: |
|
loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided): |
|
Classification loss. |
|
classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): |
|
`num_choices` is the second dimension of the input tensors. (see `input_ids` above). |
|
|
|
Classification scores (before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape |
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] |
|
|
|
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None |
|
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None |
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None |
|
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None |
|
inputs_embeds = ( |
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) |
|
if inputs_embeds is not None |
|
else None |
|
) |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
reshaped_logits = logits.view(-1, num_choices) |
|
|
|
outputs = (reshaped_logits,) + outputs[2:] |
|
|
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(reshaped_logits, labels) |
|
outputs = (loss,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with a token classification head on top (a linear layer on top of |
|
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, |
|
BERT_START_DOCSTRING, |
|
) |
|
class BertForTokenClassification(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.bert = BertModel(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) |
|
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased") |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): |
|
Labels for computing the token classification loss. |
|
Indices should be in ``[0, ..., config.num_labels - 1]``. |
|
|
|
Returns: |
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: |
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) : |
|
Classification loss. |
|
scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`) |
|
Classification scores (before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape |
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
outputs = (logits,) + outputs[2:] |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
if attention_mask is not None: |
|
active_loss = attention_mask.view(-1) == 1 |
|
active_logits = logits.view(-1, self.num_labels) |
|
active_labels = torch.where( |
|
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) |
|
) |
|
loss = loss_fct(active_logits, active_labels) |
|
else: |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
outputs = (loss,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear |
|
layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, |
|
BERT_START_DOCSTRING, |
|
) |
|
class BertForQuestionAnswering(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.bert = BertModel(config) |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) |
|
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased") |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
start_positions=None, |
|
end_positions=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
): |
|
r""" |
|
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). |
|
Position outside of the sequence are not taken into account for computing the loss. |
|
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). |
|
Position outside of the sequence are not taken into account for computing the loss. |
|
|
|
Returns: |
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: |
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): |
|
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. |
|
start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): |
|
Span-start scores (before SoftMax). |
|
end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): |
|
Span-end scores (before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape |
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1) |
|
end_logits = end_logits.squeeze(-1) |
|
|
|
outputs = (start_logits, end_logits,) + outputs[2:] |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions.clamp_(0, ignored_index) |
|
end_positions.clamp_(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
outputs = (total_loss,) + outputs |
|
|
|
return outputs |
|
|