import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint import numpy as np from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from .mmcv_custom import load_checkpoint from mmseg.utils import get_root_logger class Mlp(nn.Module): """ Multilayer perceptron.""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): """ Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """ Forward function. Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) # cat op x = self.proj(x) x = self.proj_drop(x) return x class SwinTransformerBlock(nn.Module): """ Swin Transformer Block. Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.H = None self.W = None def forward(self, x, mask_matrix): """ Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. mask_matrix: Attention mask for cyclic shift. """ B, L, C = x.shape H, W = self.H, self.W assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # pad feature maps to multiples of window size pad_l = pad_t = 0 pad_r = (self.window_size - W % self.window_size) % self.window_size pad_b = (self.window_size - H % self.window_size) % self.window_size x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, Hp, Wp, _ = x.shape # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) attn_mask = mask_matrix else: shifted_x = x attn_mask = None # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x if pad_r > 0 or pad_b > 0: x = x[:, :H, :W, :].contiguous() x = x.view(B, H * W, C) # FFN feed-forward network x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchMerging(nn.Module): """ Patch Merging Layer Args: dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x, H, W): """ Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ B, L, C = x.shape assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C) # padding pad_input = (H % 2 == 1) or (W % 2 == 1) if pad_input: x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding Args: patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() patch_size = to_2tuple(patch_size) self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): """Forward function.""" # padding _, _, H, W = x.size() if W % self.patch_size[1] != 0: x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) if H % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) x = self.proj(x) # B C Wh Ww if self.norm is not None: Wh, Ww = x.size(2), x.size(3) x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) return x class MultiModalSwinTransformer(nn.Module): def __init__(self, pretrain_img_size=224, patch_size=4, in_chans=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, out_indices=(0, 1, 2, 3), frozen_stages=-1, use_checkpoint=False, num_heads_fusion=[1, 1, 1, 1], fusion_drop=0.0 ): super().__init__() self.pretrain_img_size = pretrain_img_size self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.out_indices = out_indices self.frozen_stages = frozen_stages # split image into non-overlapping patches self.patch_embed = PatchEmbed( patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) # absolute position embedding if self.ape: pretrain_img_size = to_2tuple(pretrain_img_size) patch_size = to_2tuple(patch_size) patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]] self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])) trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = MMBasicLayer( dim=int(embed_dim * 2 ** i_layer), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, num_heads_fusion=num_heads_fusion[i_layer], fusion_drop=fusion_drop ) self.layers.append(layer) num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] self.num_features = num_features # add a norm layer for each output for i_layer in out_indices: layer = norm_layer(num_features[i_layer]) layer_name = f'norm{i_layer}' self.add_module(layer_name, layer) self._freeze_stages() def _freeze_stages(self): if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False if self.frozen_stages >= 1 and self.ape: self.absolute_pos_embed.requires_grad = False if self.frozen_stages >= 2: self.pos_drop.eval() for i in range(0, self.frozen_stages - 1): m = self.layers[i] m.eval() for param in m.parameters(): param.requires_grad = False def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) if isinstance(pretrained, str): self.apply(_init_weights) logger = get_root_logger() load_checkpoint(self, pretrained, strict=('upernet' in pretrained), logger=logger) elif pretrained is None: self.apply(_init_weights) else: raise TypeError('pretrained must be a str or None') def forward(self, x, l, l_mask): """Forward function.""" x = self.patch_embed(x) Wh, Ww = x.size(2), x.size(3) if self.ape: # interpolate the position embedding to the corresponding size absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic') x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C else: x = x.flatten(2).transpose(1, 2) x = self.pos_drop(x) outs = [] for i in range(self.num_layers): layer = self.layers[i] x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww, l, l_mask) if i in self.out_indices: norm_layer = getattr(self, f'norm{i}') x_out = norm_layer(x_out) # output of a Block has shape (B, H*W, dim) out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() outs.append(out) return tuple(outs) def train(self, mode=True): """Convert the model into training mode while keep layers freezed.""" super(MultiModalSwinTransformer, self).train(mode) self._freeze_stages() class LayerNorm(nn.Module): r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_first"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError self.normalized_shape = (normalized_shape, ) def forward(self, x): if self.data_format == "channels_last": return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class MMBasicLayer(nn.Module): def __init__(self, dim, depth, num_heads, window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, num_heads_fusion=1, fusion_drop=0.0 ): super().__init__() self.window_size = window_size self.shift_size = window_size // 2 self.depth = depth self.use_checkpoint = use_checkpoint self.dim = dim # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock( dim=dim, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # fuse before downsampling self.fusion = PWAM(dim, # both the visual input and for combining, num of channels dim, # v_in 768, # l_in dim, # key dim, # value num_heads=num_heads_fusion, dropout=fusion_drop) self.res_gate = nn.Sequential( nn.Linear(dim, dim, bias=False), nn.GELU(), nn.Linear(dim, dim, bias=False), nn.Tanh() ) self.psizes = [1,2,3,6] reduction_dim = dim // 4 self.pyramids = nn.ModuleList() self.fusions = nn.ModuleList() self.mixer = nn.Sequential( nn.Linear(dim*2, dim), nn.LayerNorm(dim), nn.Linear(dim, dim), nn.GELU() ) #self.res_gates = nn.ModuleList() for p in self.psizes: self.pyramids.append( #nn.Sequential( # #nn.AdaptiveAvgPool2d(p), # nn.Conv2d(dim, reduction_dim, kernel_size=p, padding=p//2, bias=False), # nn.BatchNorm2d(reduction_dim), # nn.ReLU(inplace=True) #) nn.Sequential( nn.AdaptiveAvgPool2d(p), nn.Conv2d(dim, dim*4, kernel_size=1, bias=False), #nn.BatchNorm2d(reduction_dim), LayerNorm(dim*4), nn.Conv2d(dim*4, dim, kernel_size=1, bias=False), nn.GELU(), nn.Conv2d(dim, reduction_dim, kernel_size=1, bias=False), ) ) self.fusions.append( PWAM(reduction_dim, # both the visual input and for combining, num of channels reduction_dim, # v_in 768, # l_in reduction_dim, # key reduction_dim, # value num_heads=num_heads_fusion, dropout=fusion_drop) ) self.reduction_dim = reduction_dim #self.res_gates.append( # nn.Sequential( # nn.Linear(reduction_dim, reduction_dim, bias=False), # nn.ReLU(), # nn.Linear(reduction_dim, reduction_dim, bias=False), # nn.Tanh() # ) #) # patch merging layer if downsample is not None: self.downsample = downsample(dim=dim, norm_layer=norm_layer) else: self.downsample = None # initialize the gate to 0 nn.init.zeros_(self.res_gate[0].weight) nn.init.zeros_(self.res_gate[2].weight) def forward(self, x, H, W, l, l_mask): """ Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. """ # calculate attention mask for SW-MSA Hp = int(np.ceil(H / self.window_size)) * self.window_size Wp = int(np.ceil(W / self.window_size)) * self.window_size img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) for blk in self.blocks: blk.H, blk.W = H, W if self.use_checkpoint: x = checkpoint.checkpoint(blk, x, attn_mask) else: x = blk(x, attn_mask) # output of a Block has shape (B, H*W, dim) out = [] #torch.Size([2, 32, 1, 1]) #torch.Size([2, 1, 32]) #P3WAM x_reshape = x.permute(0,2,1).view(x.shape[0], x.shape[2], H, W) x_size = x_reshape.size() for i, p in enumerate(self.psizes): px = self.pyramids[i](x_reshape) px = px.flatten(2).permute(0,2,1) #print(px.shape) px_residual = self.fusions[i](px, l, l_mask) px_residual = px_residual.permute(0,2,1).view(x.shape[0], self.reduction_dim , p, p) #print(px_residual.shape) out.append(F.interpolate(px_residual, x_size[2:], mode='bilinear', align_corners=True).flatten(2).permute(0,2,1)) # PWAM fusion #x_residual = self.fusion(x, l, l_mask) ## apply a gate on the residual #x = x + (self.res_gate(x_residual) * x_residual) # PWAM fusion x_residual = self.fusion(x, l, l_mask) out.append(x_residual) # apply a gate on the residual x = x + (self.res_gate(x_residual) * x_residual) #print('---') #for o in out: # print(o.shape) x_residual = self.mixer(torch.cat(out, dim =2)) if self.downsample is not None: x_down = self.downsample(x, H, W) Wh, Ww = (H + 1) // 2, (W + 1) // 2 return x_residual, H, W, x_down, Wh, Ww else: return x_residual, H, W, x, H, W class PWAM(nn.Module): def __init__(self, dim, v_in_channels, l_in_channels, key_channels, value_channels, num_heads=0, dropout=0.0): super(PWAM, self).__init__() # input x shape: (B, H*W, dim) self.vis_project = nn.Sequential(nn.Conv1d(dim, dim, 1, 1), # the init function sets bias to 0 if bias is True nn.GELU(), nn.Dropout(dropout) ) self.image_lang_att = SpatialImageLanguageAttention(v_in_channels, # v_in l_in_channels, # l_in key_channels, # key value_channels, # value out_channels=value_channels, # out num_heads=num_heads) self.project_mm = nn.Sequential(nn.Conv1d(value_channels, value_channels, 1, 1), nn.GELU(), nn.Dropout(dropout) ) def forward(self, x, l, l_mask): # input x shape: (B, H*W, dim) vis = self.vis_project(x.permute(0, 2, 1)) # (B, dim, H*W) lang = self.image_lang_att(x, l.permute(0,2,1), l_mask) # (B, H*W, dim) lang = lang.permute(0, 2, 1) # (B, dim, H*W) mm = torch.mul(vis, lang) mm = self.project_mm(mm) # (B, dim, H*W) mm = mm.permute(0, 2, 1) # (B, H*W, dim) return mm class SpatialImageLanguageAttention(nn.Module): def __init__(self, v_in_channels, l_in_channels, key_channels, value_channels, out_channels=None, num_heads=1): super(SpatialImageLanguageAttention, self).__init__() # x shape: (B, H*W, v_in_channels) # l input shape: (B, l_in_channels, N_l) # l_mask shape: (B, N_l, 1) self.v_in_channels = v_in_channels self.l_in_channels = l_in_channels self.out_channels = out_channels self.key_channels = key_channels self.value_channels = value_channels self.num_heads = num_heads if out_channels is None: self.out_channels = self.value_channels # Keys: language features: (B, l_in_channels, #words) # avoid any form of spatial normalization because a sentence contains many padding 0s self.f_key = nn.Sequential( nn.Conv1d(self.l_in_channels, self.key_channels, kernel_size=1, stride=1), ) # Queries: visual features: (B, H*W, v_in_channels) self.f_query = nn.Sequential( #nn.Conv1d(self.v_in_channels, self.key_channels, kernel_size=1, stride=1), #nn.InstanceNorm1d(self.key_channels), #nn.Conv1d(self.v_in_channels, self.key_channels, kernel_size=1, stride=1), nn.Linear(self.v_in_channels, self.key_channels), #nn.InstanceNorm1d(self.key_channels), nn.LayerNorm(self.key_channels), ) # Values: language features: (B, l_in_channels, #words) self.f_value = nn.Sequential( nn.Conv1d(self.l_in_channels, self.value_channels, kernel_size=1, stride=1), ) # Out projection self.W = nn.Sequential( #nn.Conv1d(self.value_channels, self.out_channels, kernel_size=1, stride=1), #nn.InstanceNorm1d(self.out_channels), #nn.Conv1d(self.value_channels, self.out_channels, kernel_size=1, stride=1), nn.Linear(self.value_channels, self.out_channels), #nn.InstanceNorm1d(self.out_channels), nn.LayerNorm(self.out_channels), ) def forward(self, x, l, l_mask): # x shape: (B, H*W, v_in_channels) # l input shape: (B, l_in_channels, N_l) # l_mask shape: (B, N_l, 1) B, HW = x.size(0), x.size(1) #x = x.permute(0, 2, 1) # (B, key_channels, H*W) l_mask = l_mask.permute(0, 2, 1) # (B, N_l, 1) -> (B, 1, N_l) query = self.f_query(x).permute(0,2,1) # (B, key_channels, H*W) if Conv1D query = query.permute(0, 2, 1) # (B, H*W, key_channels) key = self.f_key(l) # (B, key_channels, N_l) value = self.f_value(l) # (B, self.value_channels, N_l) key = key * l_mask # (B, key_channels, N_l) value = value * l_mask # (B, self.value_channels, N_l) n_l = value.size(-1) query = query.reshape(B, HW, self.num_heads, self.key_channels//self.num_heads).permute(0, 2, 1, 3) # (b, num_heads, H*W, self.key_channels//self.num_heads) key = key.reshape(B, self.num_heads, self.key_channels//self.num_heads, n_l) # (b, num_heads, self.key_channels//self.num_heads, n_l) value = value.reshape(B, self.num_heads, self.value_channels//self.num_heads, n_l) # # (b, num_heads, self.value_channels//self.num_heads, n_l) l_mask = l_mask.unsqueeze(1) # (b, 1, 1, n_l) sim_map = torch.matmul(query, key) # (B, self.num_heads, H*W, N_l) sim_map = (self.key_channels ** -.5) * sim_map # scaled dot product sim_map = sim_map + (1e4*l_mask - 1e4) # assign a very small number to padding positions sim_map = F.softmax(sim_map, dim=-1) # (B, num_heads, h*w, N_l) out = torch.matmul(sim_map, value.permute(0, 1, 3, 2)) # (B, num_heads, H*W, self.value_channels//num_heads) out = out.permute(0, 2, 1, 3).contiguous().reshape(B, HW, self.value_channels) # (B, H*W, value_channels) #out = out.permute(0, 2, 1) # (B, value_channels, HW) #out = self.W(out) # (B, value_channels, HW) #out = out.permute(0, 2, 1) # (B, HW, value_channels) out = self.W(out) return out