Spaces:
Runtime error
Runtime error
File size: 4,451 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
from comfy import sd1_clip
from transformers import BertTokenizer
from .spiece_tokenizer import SPieceTokenizer
from .bert import BertModel
import comfy.text_encoders.t5
import os
import torch
class HyditBertModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=BertModel, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
class HyditBertTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77)
class MT5XLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
class MT5XLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
#tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model")
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
class HyditTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None)
self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory)
self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {}
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids)
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):
return self.hydit_clip.untokenize(token_weight_pair)
def state_dict(self):
return {"mt5xl.spiece_model": self.mt5xl.state_dict()["spiece_model"]}
class HyditModel(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__()
self.hydit_clip = HyditBertModel(dtype=dtype, model_options=model_options)
self.mt5xl = MT5XLModel(dtype=dtype, model_options=model_options)
self.dtypes = set()
if dtype is not None:
self.dtypes.add(dtype)
def encode_token_weights(self, token_weight_pairs):
hydit_out = self.hydit_clip.encode_token_weights(token_weight_pairs["hydit_clip"])
mt5_out = self.mt5xl.encode_token_weights(token_weight_pairs["mt5xl"])
return hydit_out[0], hydit_out[1], {"attention_mask": hydit_out[2]["attention_mask"], "conditioning_mt5xl": mt5_out[0], "attention_mask_mt5xl": mt5_out[2]["attention_mask"]}
def load_sd(self, sd):
if "bert.encoder.layer.0.attention.self.query.weight" in sd:
return self.hydit_clip.load_sd(sd)
else:
return self.mt5xl.load_sd(sd)
def set_clip_options(self, options):
self.hydit_clip.set_clip_options(options)
self.mt5xl.set_clip_options(options)
def reset_clip_options(self):
self.hydit_clip.reset_clip_options()
self.mt5xl.reset_clip_options()
|