Spaces:
Runtime error
Runtime error
import torchaudio | |
import torch | |
import comfy.model_management | |
import folder_paths | |
import os | |
import io | |
import json | |
import struct | |
import random | |
import hashlib | |
from comfy.cli_args import args | |
class EmptyLatentAudio: | |
def __init__(self): | |
self.device = comfy.model_management.intermediate_device() | |
def INPUT_TYPES(s): | |
return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}), | |
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "generate" | |
CATEGORY = "latent/audio" | |
def generate(self, seconds, batch_size): | |
length = round((seconds * 44100 / 2048) / 2) * 2 | |
latent = torch.zeros([batch_size, 64, length], device=self.device) | |
return ({"samples":latent, "type": "audio"}, ) | |
class VAEEncodeAudio: | |
def INPUT_TYPES(s): | |
return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "encode" | |
CATEGORY = "latent/audio" | |
def encode(self, vae, audio): | |
sample_rate = audio["sample_rate"] | |
if 44100 != sample_rate: | |
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100) | |
else: | |
waveform = audio["waveform"] | |
t = vae.encode(waveform.movedim(1, -1)) | |
return ({"samples":t}, ) | |
class VAEDecodeAudio: | |
def INPUT_TYPES(s): | |
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} | |
RETURN_TYPES = ("AUDIO",) | |
FUNCTION = "decode" | |
CATEGORY = "latent/audio" | |
def decode(self, vae, samples): | |
audio = vae.decode(samples["samples"]).movedim(-1, 1) | |
std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0 | |
std[std < 1.0] = 1.0 | |
audio /= std | |
return ({"waveform": audio, "sample_rate": 44100}, ) | |
def create_vorbis_comment_block(comment_dict, last_block): | |
vendor_string = b'ComfyUI' | |
vendor_length = len(vendor_string) | |
comments = [] | |
for key, value in comment_dict.items(): | |
comment = f"{key}={value}".encode('utf-8') | |
comments.append(struct.pack('<I', len(comment)) + comment) | |
user_comment_list_length = len(comments) | |
user_comments = b''.join(comments) | |
comment_data = struct.pack('<I', vendor_length) + vendor_string + struct.pack('<I', user_comment_list_length) + user_comments | |
if last_block: | |
id = b'\x84' | |
else: | |
id = b'\x04' | |
comment_block = id + struct.pack('>I', len(comment_data))[1:] + comment_data | |
return comment_block | |
def insert_or_replace_vorbis_comment(flac_io, comment_dict): | |
if len(comment_dict) == 0: | |
return flac_io | |
flac_io.seek(4) | |
blocks = [] | |
last_block = False | |
while not last_block: | |
header = flac_io.read(4) | |
last_block = (header[0] & 0x80) != 0 | |
block_type = header[0] & 0x7F | |
block_length = struct.unpack('>I', b'\x00' + header[1:])[0] | |
block_data = flac_io.read(block_length) | |
if block_type == 4 or block_type == 1: | |
pass | |
else: | |
header = bytes([(header[0] & (~0x80))]) + header[1:] | |
blocks.append(header + block_data) | |
blocks.append(create_vorbis_comment_block(comment_dict, last_block=True)) | |
new_flac_io = io.BytesIO() | |
new_flac_io.write(b'fLaC') | |
for block in blocks: | |
new_flac_io.write(block) | |
new_flac_io.write(flac_io.read()) | |
return new_flac_io | |
class SaveAudio: | |
def __init__(self): | |
self.output_dir = folder_paths.get_output_directory() | |
self.type = "output" | |
self.prefix_append = "" | |
def INPUT_TYPES(s): | |
return {"required": { "audio": ("AUDIO", ), | |
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"})}, | |
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
} | |
RETURN_TYPES = () | |
FUNCTION = "save_audio" | |
OUTPUT_NODE = True | |
CATEGORY = "audio" | |
def save_audio(self, audio, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): | |
filename_prefix += self.prefix_append | |
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) | |
results = list() | |
metadata = {} | |
if not args.disable_metadata: | |
if prompt is not None: | |
metadata["prompt"] = json.dumps(prompt) | |
if extra_pnginfo is not None: | |
for x in extra_pnginfo: | |
metadata[x] = json.dumps(extra_pnginfo[x]) | |
for (batch_number, waveform) in enumerate(audio["waveform"].cpu()): | |
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) | |
file = f"{filename_with_batch_num}_{counter:05}_.flac" | |
buff = io.BytesIO() | |
torchaudio.save(buff, waveform, audio["sample_rate"], format="FLAC") | |
buff = insert_or_replace_vorbis_comment(buff, metadata) | |
with open(os.path.join(full_output_folder, file), 'wb') as f: | |
f.write(buff.getbuffer()) | |
results.append({ | |
"filename": file, | |
"subfolder": subfolder, | |
"type": self.type | |
}) | |
counter += 1 | |
return { "ui": { "audio": results } } | |
class PreviewAudio(SaveAudio): | |
def __init__(self): | |
self.output_dir = folder_paths.get_temp_directory() | |
self.type = "temp" | |
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) | |
def INPUT_TYPES(s): | |
return {"required": | |
{"audio": ("AUDIO", ), }, | |
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
} | |
class LoadAudio: | |
def INPUT_TYPES(s): | |
input_dir = folder_paths.get_input_directory() | |
files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]) | |
return {"required": {"audio": (sorted(files), {"audio_upload": True})}} | |
CATEGORY = "audio" | |
RETURN_TYPES = ("AUDIO", ) | |
FUNCTION = "load" | |
def load(self, audio): | |
audio_path = folder_paths.get_annotated_filepath(audio) | |
waveform, sample_rate = torchaudio.load(audio_path) | |
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} | |
return (audio, ) | |
def IS_CHANGED(s, audio): | |
image_path = folder_paths.get_annotated_filepath(audio) | |
m = hashlib.sha256() | |
with open(image_path, 'rb') as f: | |
m.update(f.read()) | |
return m.digest().hex() | |
def VALIDATE_INPUTS(s, audio): | |
if not folder_paths.exists_annotated_filepath(audio): | |
return "Invalid audio file: {}".format(audio) | |
return True | |
NODE_CLASS_MAPPINGS = { | |
"EmptyLatentAudio": EmptyLatentAudio, | |
"VAEEncodeAudio": VAEEncodeAudio, | |
"VAEDecodeAudio": VAEDecodeAudio, | |
"SaveAudio": SaveAudio, | |
"LoadAudio": LoadAudio, | |
"PreviewAudio": PreviewAudio, | |
} | |