Spaces:
Runtime error
Runtime error
import comfy.supported_models | |
import comfy.supported_models_base | |
import comfy.utils | |
import math | |
import logging | |
import torch | |
def count_blocks(state_dict_keys, prefix_string): | |
count = 0 | |
while True: | |
c = False | |
for k in state_dict_keys: | |
if k.startswith(prefix_string.format(count)): | |
c = True | |
break | |
if c == False: | |
break | |
count += 1 | |
return count | |
def calculate_transformer_depth(prefix, state_dict_keys, state_dict): | |
context_dim = None | |
use_linear_in_transformer = False | |
transformer_prefix = prefix + "1.transformer_blocks." | |
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys))) | |
if len(transformer_keys) > 0: | |
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}') | |
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1] | |
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2 | |
time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict | |
time_stack_cross = '{}1.time_stack.0.attn2.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn2.to_q.weight'.format(prefix) in state_dict | |
return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross | |
return None | |
def detect_unet_config(state_dict, key_prefix): | |
state_dict_keys = list(state_dict.keys()) | |
if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model | |
unet_config = {} | |
unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1] | |
patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2] | |
unet_config["patch_size"] = patch_size | |
final_layer = '{}final_layer.linear.weight'.format(key_prefix) | |
if final_layer in state_dict: | |
unet_config["out_channels"] = state_dict[final_layer].shape[0] // (patch_size * patch_size) | |
unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64 | |
unet_config["input_size"] = None | |
y_key = '{}y_embedder.mlp.0.weight'.format(key_prefix) | |
if y_key in state_dict_keys: | |
unet_config["adm_in_channels"] = state_dict[y_key].shape[1] | |
context_key = '{}context_embedder.weight'.format(key_prefix) | |
if context_key in state_dict_keys: | |
in_features = state_dict[context_key].shape[1] | |
out_features = state_dict[context_key].shape[0] | |
unet_config["context_embedder_config"] = {"target": "torch.nn.Linear", "params": {"in_features": in_features, "out_features": out_features}} | |
num_patches_key = '{}pos_embed'.format(key_prefix) | |
if num_patches_key in state_dict_keys: | |
num_patches = state_dict[num_patches_key].shape[1] | |
unet_config["num_patches"] = num_patches | |
unet_config["pos_embed_max_size"] = round(math.sqrt(num_patches)) | |
rms_qk = '{}joint_blocks.0.context_block.attn.ln_q.weight'.format(key_prefix) | |
if rms_qk in state_dict_keys: | |
unet_config["qk_norm"] = "rms" | |
unet_config["pos_embed_scaling_factor"] = None #unused for inference | |
context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix) | |
if context_processor in state_dict_keys: | |
unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.') | |
unet_config["x_block_self_attn_layers"] = [] | |
for key in state_dict_keys: | |
if key.startswith('{}joint_blocks.'.format(key_prefix)) and key.endswith('.x_block.attn2.qkv.weight'): | |
layer = key[len('{}joint_blocks.'.format(key_prefix)):-len('.x_block.attn2.qkv.weight')] | |
unet_config["x_block_self_attn_layers"].append(int(layer)) | |
return unet_config | |
if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade | |
unet_config = {} | |
text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix) | |
if text_mapper_name in state_dict_keys: | |
unet_config['stable_cascade_stage'] = 'c' | |
w = state_dict[text_mapper_name] | |
if w.shape[0] == 1536: #stage c lite | |
unet_config['c_cond'] = 1536 | |
unet_config['c_hidden'] = [1536, 1536] | |
unet_config['nhead'] = [24, 24] | |
unet_config['blocks'] = [[4, 12], [12, 4]] | |
elif w.shape[0] == 2048: #stage c full | |
unet_config['c_cond'] = 2048 | |
elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys: | |
unet_config['stable_cascade_stage'] = 'b' | |
w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)] | |
if w.shape[-1] == 640: | |
unet_config['c_hidden'] = [320, 640, 1280, 1280] | |
unet_config['nhead'] = [-1, -1, 20, 20] | |
unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]] | |
unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]] | |
elif w.shape[-1] == 576: #stage b lite | |
unet_config['c_hidden'] = [320, 576, 1152, 1152] | |
unet_config['nhead'] = [-1, 9, 18, 18] | |
unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]] | |
unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]] | |
return unet_config | |
if '{}transformer.rotary_pos_emb.inv_freq'.format(key_prefix) in state_dict_keys: #stable audio dit | |
unet_config = {} | |
unet_config["audio_model"] = "dit1.0" | |
return unet_config | |
if '{}double_layers.0.attn.w1q.weight'.format(key_prefix) in state_dict_keys: #aura flow dit | |
unet_config = {} | |
unet_config["max_seq"] = state_dict['{}positional_encoding'.format(key_prefix)].shape[1] | |
unet_config["cond_seq_dim"] = state_dict['{}cond_seq_linear.weight'.format(key_prefix)].shape[1] | |
double_layers = count_blocks(state_dict_keys, '{}double_layers.'.format(key_prefix) + '{}.') | |
single_layers = count_blocks(state_dict_keys, '{}single_layers.'.format(key_prefix) + '{}.') | |
unet_config["n_double_layers"] = double_layers | |
unet_config["n_layers"] = double_layers + single_layers | |
return unet_config | |
if '{}mlp_t5.0.weight'.format(key_prefix) in state_dict_keys: #Hunyuan DiT | |
unet_config = {} | |
unet_config["image_model"] = "hydit" | |
unet_config["depth"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.') | |
unet_config["hidden_size"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] | |
if unet_config["hidden_size"] == 1408 and unet_config["depth"] == 40: #DiT-g/2 | |
unet_config["mlp_ratio"] = 4.3637 | |
if state_dict['{}extra_embedder.0.weight'.format(key_prefix)].shape[1] == 3968: | |
unet_config["size_cond"] = True | |
unet_config["use_style_cond"] = True | |
unet_config["image_model"] = "hydit1" | |
return unet_config | |
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux | |
dit_config = {} | |
dit_config["image_model"] = "flux" | |
dit_config["in_channels"] = 16 | |
patch_size = 2 | |
dit_config["patch_size"] = patch_size | |
in_key = "{}img_in.weight".format(key_prefix) | |
if in_key in state_dict_keys: | |
dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size) | |
dit_config["out_channels"] = 16 | |
dit_config["vec_in_dim"] = 768 | |
dit_config["context_in_dim"] = 4096 | |
dit_config["hidden_size"] = 3072 | |
dit_config["mlp_ratio"] = 4.0 | |
dit_config["num_heads"] = 24 | |
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.') | |
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.') | |
dit_config["axes_dim"] = [16, 56, 56] | |
dit_config["theta"] = 10000 | |
dit_config["qkv_bias"] = True | |
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys | |
return dit_config | |
if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview | |
dit_config = {} | |
dit_config["image_model"] = "mochi_preview" | |
dit_config["depth"] = 48 | |
dit_config["patch_size"] = 2 | |
dit_config["num_heads"] = 24 | |
dit_config["hidden_size_x"] = 3072 | |
dit_config["hidden_size_y"] = 1536 | |
dit_config["mlp_ratio_x"] = 4.0 | |
dit_config["mlp_ratio_y"] = 4.0 | |
dit_config["learn_sigma"] = False | |
dit_config["in_channels"] = 12 | |
dit_config["qk_norm"] = True | |
dit_config["qkv_bias"] = False | |
dit_config["out_bias"] = True | |
dit_config["attn_drop"] = 0.0 | |
dit_config["patch_embed_bias"] = True | |
dit_config["posenc_preserve_area"] = True | |
dit_config["timestep_mlp_bias"] = True | |
dit_config["attend_to_padding"] = False | |
dit_config["timestep_scale"] = 1000.0 | |
dit_config["use_t5"] = True | |
dit_config["t5_feat_dim"] = 4096 | |
dit_config["t5_token_length"] = 256 | |
dit_config["rope_theta"] = 10000.0 | |
return dit_config | |
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv | |
dit_config = {} | |
dit_config["image_model"] = "ltxv" | |
return dit_config | |
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys: | |
return None | |
unet_config = { | |
"use_checkpoint": False, | |
"image_size": 32, | |
"use_spatial_transformer": True, | |
"legacy": False | |
} | |
y_input = '{}label_emb.0.0.weight'.format(key_prefix) | |
if y_input in state_dict_keys: | |
unet_config["num_classes"] = "sequential" | |
unet_config["adm_in_channels"] = state_dict[y_input].shape[1] | |
else: | |
unet_config["adm_in_channels"] = None | |
model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0] | |
in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1] | |
out_key = '{}out.2.weight'.format(key_prefix) | |
if out_key in state_dict: | |
out_channels = state_dict[out_key].shape[0] | |
else: | |
out_channels = 4 | |
num_res_blocks = [] | |
channel_mult = [] | |
attention_resolutions = [] | |
transformer_depth = [] | |
transformer_depth_output = [] | |
context_dim = None | |
use_linear_in_transformer = False | |
video_model = False | |
video_model_cross = False | |
current_res = 1 | |
count = 0 | |
last_res_blocks = 0 | |
last_channel_mult = 0 | |
input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.') | |
for count in range(input_block_count): | |
prefix = '{}input_blocks.{}.'.format(key_prefix, count) | |
prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1) | |
block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys))) | |
if len(block_keys) == 0: | |
break | |
block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys))) | |
if "{}0.op.weight".format(prefix) in block_keys: #new layer | |
num_res_blocks.append(last_res_blocks) | |
channel_mult.append(last_channel_mult) | |
current_res *= 2 | |
last_res_blocks = 0 | |
last_channel_mult = 0 | |
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) | |
if out is not None: | |
transformer_depth_output.append(out[0]) | |
else: | |
transformer_depth_output.append(0) | |
else: | |
res_block_prefix = "{}0.in_layers.0.weight".format(prefix) | |
if res_block_prefix in block_keys: | |
last_res_blocks += 1 | |
last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels | |
out = calculate_transformer_depth(prefix, state_dict_keys, state_dict) | |
if out is not None: | |
transformer_depth.append(out[0]) | |
if context_dim is None: | |
context_dim = out[1] | |
use_linear_in_transformer = out[2] | |
video_model = out[3] | |
video_model_cross = out[4] | |
else: | |
transformer_depth.append(0) | |
res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output) | |
if res_block_prefix in block_keys_output: | |
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) | |
if out is not None: | |
transformer_depth_output.append(out[0]) | |
else: | |
transformer_depth_output.append(0) | |
num_res_blocks.append(last_res_blocks) | |
channel_mult.append(last_channel_mult) | |
if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys: | |
transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}') | |
elif "{}middle_block.0.in_layers.0.weight".format(key_prefix) in state_dict_keys: | |
transformer_depth_middle = -1 | |
else: | |
transformer_depth_middle = -2 | |
unet_config["in_channels"] = in_channels | |
unet_config["out_channels"] = out_channels | |
unet_config["model_channels"] = model_channels | |
unet_config["num_res_blocks"] = num_res_blocks | |
unet_config["transformer_depth"] = transformer_depth | |
unet_config["transformer_depth_output"] = transformer_depth_output | |
unet_config["channel_mult"] = channel_mult | |
unet_config["transformer_depth_middle"] = transformer_depth_middle | |
unet_config['use_linear_in_transformer'] = use_linear_in_transformer | |
unet_config["context_dim"] = context_dim | |
if video_model: | |
unet_config["extra_ff_mix_layer"] = True | |
unet_config["use_spatial_context"] = True | |
unet_config["merge_strategy"] = "learned_with_images" | |
unet_config["merge_factor"] = 0.0 | |
unet_config["video_kernel_size"] = [3, 1, 1] | |
unet_config["use_temporal_resblock"] = True | |
unet_config["use_temporal_attention"] = True | |
unet_config["disable_temporal_crossattention"] = not video_model_cross | |
else: | |
unet_config["use_temporal_resblock"] = False | |
unet_config["use_temporal_attention"] = False | |
return unet_config | |
def model_config_from_unet_config(unet_config, state_dict=None): | |
for model_config in comfy.supported_models.models: | |
if model_config.matches(unet_config, state_dict): | |
return model_config(unet_config) | |
logging.error("no match {}".format(unet_config)) | |
return None | |
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False): | |
unet_config = detect_unet_config(state_dict, unet_key_prefix) | |
if unet_config is None: | |
return None | |
model_config = model_config_from_unet_config(unet_config, state_dict) | |
if model_config is None and use_base_if_no_match: | |
model_config = comfy.supported_models_base.BASE(unet_config) | |
scaled_fp8_key = "{}scaled_fp8".format(unet_key_prefix) | |
if scaled_fp8_key in state_dict: | |
scaled_fp8_weight = state_dict.pop(scaled_fp8_key) | |
model_config.scaled_fp8 = scaled_fp8_weight.dtype | |
if model_config.scaled_fp8 == torch.float32: | |
model_config.scaled_fp8 = torch.float8_e4m3fn | |
return model_config | |
def unet_prefix_from_state_dict(state_dict): | |
candidates = ["model.diffusion_model.", #ldm/sgm models | |
"model.model.", #audio models | |
] | |
counts = {k: 0 for k in candidates} | |
for k in state_dict: | |
for c in candidates: | |
if k.startswith(c): | |
counts[c] += 1 | |
break | |
top = max(counts, key=counts.get) | |
if counts[top] > 5: | |
return top | |
else: | |
return "model." #aura flow and others | |
def convert_config(unet_config): | |
new_config = unet_config.copy() | |
num_res_blocks = new_config.get("num_res_blocks", None) | |
channel_mult = new_config.get("channel_mult", None) | |
if isinstance(num_res_blocks, int): | |
num_res_blocks = len(channel_mult) * [num_res_blocks] | |
if "attention_resolutions" in new_config: | |
attention_resolutions = new_config.pop("attention_resolutions") | |
transformer_depth = new_config.get("transformer_depth", None) | |
transformer_depth_middle = new_config.get("transformer_depth_middle", None) | |
if isinstance(transformer_depth, int): | |
transformer_depth = len(channel_mult) * [transformer_depth] | |
if transformer_depth_middle is None: | |
transformer_depth_middle = transformer_depth[-1] | |
t_in = [] | |
t_out = [] | |
s = 1 | |
for i in range(len(num_res_blocks)): | |
res = num_res_blocks[i] | |
d = 0 | |
if s in attention_resolutions: | |
d = transformer_depth[i] | |
t_in += [d] * res | |
t_out += [d] * (res + 1) | |
s *= 2 | |
transformer_depth = t_in | |
transformer_depth_output = t_out | |
new_config["transformer_depth"] = t_in | |
new_config["transformer_depth_output"] = t_out | |
new_config["transformer_depth_middle"] = transformer_depth_middle | |
new_config["num_res_blocks"] = num_res_blocks | |
return new_config | |
def unet_config_from_diffusers_unet(state_dict, dtype=None): | |
match = {} | |
transformer_depth = [] | |
attn_res = 1 | |
down_blocks = count_blocks(state_dict, "down_blocks.{}") | |
for i in range(down_blocks): | |
attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}') | |
res_blocks = count_blocks(state_dict, "down_blocks.{}.resnets.".format(i) + '{}') | |
for ab in range(attn_blocks): | |
transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}') | |
transformer_depth.append(transformer_count) | |
if transformer_count > 0: | |
match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1] | |
attn_res *= 2 | |
if attn_blocks == 0: | |
for i in range(res_blocks): | |
transformer_depth.append(0) | |
match["transformer_depth"] = transformer_depth | |
match["model_channels"] = state_dict["conv_in.weight"].shape[0] | |
match["in_channels"] = state_dict["conv_in.weight"].shape[1] | |
match["adm_in_channels"] = None | |
if "class_embedding.linear_1.weight" in state_dict: | |
match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1] | |
elif "add_embedding.linear_1.weight" in state_dict: | |
match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1] | |
SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, | |
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384, | |
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4, | |
'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0], | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], | |
'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, | |
'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, | |
'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, | |
'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, | |
'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], | |
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8, | |
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1, | |
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1], | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0, | |
'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0], | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320, | |
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, | |
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
SDXL_diffusers_ip2p = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 8, 'model_channels': 320, | |
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, | |
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4], | |
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2], | |
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
KOALA_700M = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 5], 'transformer_depth_output': [0, 0, 2, 2, 5, 5], | |
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
KOALA_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, | |
'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 6], 'transformer_depth_output': [0, 0, 2, 2, 6, 6], | |
'channel_mult': [1, 2, 4], 'transformer_depth_middle': 6, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
SD09_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], | |
'transformer_depth': [1, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, | |
'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1], | |
'use_temporal_attention': False, 'use_temporal_resblock': False, 'disable_self_attentions': [True, False, False]} | |
SD_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, | |
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], | |
'transformer_depth': [0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': False, | |
'context_dim': 768, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 1, 1, 1, 1], | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
SD15_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, | |
'dtype': dtype, 'in_channels': 9, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], | |
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8, | |
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], | |
'use_temporal_attention': False, 'use_temporal_resblock': False} | |
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p, SD15_diffusers_inpaint] | |
for unet_config in supported_models: | |
matches = True | |
for k in match: | |
if match[k] != unet_config[k]: | |
matches = False | |
break | |
if matches: | |
return convert_config(unet_config) | |
return None | |
def model_config_from_diffusers_unet(state_dict): | |
unet_config = unet_config_from_diffusers_unet(state_dict) | |
if unet_config is not None: | |
return model_config_from_unet_config(unet_config) | |
return None | |
def convert_diffusers_mmdit(state_dict, output_prefix=""): | |
out_sd = {} | |
if 'joint_transformer_blocks.0.attn.add_k_proj.weight' in state_dict: #AuraFlow | |
num_joint = count_blocks(state_dict, 'joint_transformer_blocks.{}.') | |
num_single = count_blocks(state_dict, 'single_transformer_blocks.{}.') | |
sd_map = comfy.utils.auraflow_to_diffusers({"n_double_layers": num_joint, "n_layers": num_joint + num_single}, output_prefix=output_prefix) | |
elif 'x_embedder.weight' in state_dict: #Flux | |
depth = count_blocks(state_dict, 'transformer_blocks.{}.') | |
depth_single_blocks = count_blocks(state_dict, 'single_transformer_blocks.{}.') | |
hidden_size = state_dict["x_embedder.bias"].shape[0] | |
sd_map = comfy.utils.flux_to_diffusers({"depth": depth, "depth_single_blocks": depth_single_blocks, "hidden_size": hidden_size}, output_prefix=output_prefix) | |
elif 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict: #SD3 | |
num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.') | |
depth = state_dict["pos_embed.proj.weight"].shape[0] // 64 | |
sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix) | |
else: | |
return None | |
for k in sd_map: | |
weight = state_dict.get(k, None) | |
if weight is not None: | |
t = sd_map[k] | |
if not isinstance(t, str): | |
if len(t) > 2: | |
fun = t[2] | |
else: | |
fun = lambda a: a | |
offset = t[1] | |
if offset is not None: | |
old_weight = out_sd.get(t[0], None) | |
if old_weight is None: | |
old_weight = torch.empty_like(weight) | |
if old_weight.shape[offset[0]] < offset[1] + offset[2]: | |
exp = list(weight.shape) | |
exp[offset[0]] = offset[1] + offset[2] | |
new = torch.empty(exp, device=weight.device, dtype=weight.dtype) | |
new[:old_weight.shape[0]] = old_weight | |
old_weight = new | |
w = old_weight.narrow(offset[0], offset[1], offset[2]) | |
else: | |
old_weight = weight | |
w = weight | |
w[:] = fun(weight) | |
t = t[0] | |
out_sd[t] = old_weight | |
else: | |
out_sd[t] = weight | |
state_dict.pop(k) | |
return out_sd | |