flux-style-shaping / comfy /model_management.py
multimodalart's picture
Squashing commit
4450790 verified
"""
This file is part of ComfyUI.
Copyright (C) 2024 Comfy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import psutil
import logging
from enum import Enum
from comfy.cli_args import args
import torch
import sys
import platform
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
NO_VRAM = 1 #Very low vram: enable all the options to save vram
LOW_VRAM = 2
NORMAL_VRAM = 3
HIGH_VRAM = 4
SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
class CPUState(Enum):
GPU = 0
CPU = 1
MPS = 2
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
cpu_state = CPUState.GPU
total_vram = 0
xpu_available = False
torch_version = ""
try:
torch_version = torch.version.__version__
xpu_available = (int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) <= 4)) and torch.xpu.is_available()
except:
pass
lowvram_available = True
if args.deterministic:
logging.info("Using deterministic algorithms for pytorch")
torch.use_deterministic_algorithms(True, warn_only=True)
directml_enabled = False
if args.directml is not None:
import torch_directml
directml_enabled = True
device_index = args.directml
if device_index < 0:
directml_device = torch_directml.device()
else:
directml_device = torch_directml.device(device_index)
logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
# torch_directml.disable_tiled_resources(True)
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
try:
import intel_extension_for_pytorch as ipex
_ = torch.xpu.device_count()
xpu_available = torch.xpu.is_available()
except:
xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available())
try:
if torch.backends.mps.is_available():
cpu_state = CPUState.MPS
import torch.mps
except:
pass
if args.cpu:
cpu_state = CPUState.CPU
def is_intel_xpu():
global cpu_state
global xpu_available
if cpu_state == CPUState.GPU:
if xpu_available:
return True
return False
def get_torch_device():
global directml_enabled
global cpu_state
if directml_enabled:
global directml_device
return directml_device
if cpu_state == CPUState.MPS:
return torch.device("mps")
if cpu_state == CPUState.CPU:
return torch.device("cpu")
else:
if is_intel_xpu():
return torch.device("xpu", torch.xpu.current_device())
else:
return torch.device(torch.cuda.current_device())
def get_total_memory(dev=None, torch_total_too=False):
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_total = psutil.virtual_memory().total
mem_total_torch = mem_total
else:
if directml_enabled:
mem_total = 1024 * 1024 * 1024 #TODO
mem_total_torch = mem_total
elif is_intel_xpu():
stats = torch.xpu.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
mem_total_torch = mem_reserved
mem_total = torch.xpu.get_device_properties(dev).total_memory
else:
stats = torch.cuda.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
mem_total_torch = mem_reserved
mem_total = mem_total_cuda
if torch_total_too:
return (mem_total, mem_total_torch)
else:
return mem_total
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
try:
logging.info("pytorch version: {}".format(torch_version))
except:
pass
try:
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
OOM_EXCEPTION = Exception
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
if args.disable_xformers:
XFORMERS_IS_AVAILABLE = False
else:
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILABLE = True
try:
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
except:
pass
try:
XFORMERS_VERSION = xformers.version.__version__
logging.info("xformers version: {}".format(XFORMERS_VERSION))
if XFORMERS_VERSION.startswith("0.0.18"):
logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
logging.warning("Please downgrade or upgrade xformers to a different version.\n")
XFORMERS_ENABLED_VAE = False
except:
pass
except:
XFORMERS_IS_AVAILABLE = False
def is_nvidia():
global cpu_state
if cpu_state == CPUState.GPU:
if torch.version.cuda:
return True
return False
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
ENABLE_PYTORCH_ATTENTION = True
XFORMERS_IS_AVAILABLE = False
VAE_DTYPES = [torch.float32]
try:
if is_nvidia():
if int(torch_version[0]) >= 2:
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
ENABLE_PYTORCH_ATTENTION = True
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
if is_intel_xpu():
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
ENABLE_PYTORCH_ATTENTION = True
except:
pass
if is_intel_xpu():
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
if args.cpu_vae:
VAE_DTYPES = [torch.float32]
if ENABLE_PYTORCH_ATTENTION:
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
if args.lowvram:
set_vram_to = VRAMState.LOW_VRAM
lowvram_available = True
elif args.novram:
set_vram_to = VRAMState.NO_VRAM
elif args.highvram or args.gpu_only:
vram_state = VRAMState.HIGH_VRAM
FORCE_FP32 = False
FORCE_FP16 = False
if args.force_fp32:
logging.info("Forcing FP32, if this improves things please report it.")
FORCE_FP32 = True
if args.force_fp16:
logging.info("Forcing FP16.")
FORCE_FP16 = True
if lowvram_available:
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
vram_state = set_vram_to
if cpu_state != CPUState.GPU:
vram_state = VRAMState.DISABLED
if cpu_state == CPUState.MPS:
vram_state = VRAMState.SHARED
logging.info(f"Set vram state to: {vram_state.name}")
DISABLE_SMART_MEMORY = args.disable_smart_memory
if DISABLE_SMART_MEMORY:
logging.info("Disabling smart memory management")
def get_torch_device_name(device):
if hasattr(device, 'type'):
if device.type == "cuda":
try:
allocator_backend = torch.cuda.get_allocator_backend()
except:
allocator_backend = ""
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
else:
return "{}".format(device.type)
elif is_intel_xpu():
return "{} {}".format(device, torch.xpu.get_device_name(device))
else:
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
try:
logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except:
logging.warning("Could not pick default device.")
current_loaded_models = []
def module_size(module):
module_mem = 0
sd = module.state_dict()
for k in sd:
t = sd[k]
module_mem += t.nelement() * t.element_size()
return module_mem
class LoadedModel:
def __init__(self, model):
self.model = model
self.device = model.load_device
self.weights_loaded = False
self.real_model = None
self.currently_used = True
def model_memory(self):
return self.model.model_size()
def model_offloaded_memory(self):
return self.model.model_size() - self.model.loaded_size()
def model_memory_required(self, device):
if device == self.model.current_loaded_device():
return self.model_offloaded_memory()
else:
return self.model_memory()
def model_load(self, lowvram_model_memory=0, force_patch_weights=False):
patch_model_to = self.device
self.model.model_patches_to(self.device)
self.model.model_patches_to(self.model.model_dtype())
load_weights = not self.weights_loaded
if self.model.loaded_size() > 0:
use_more_vram = lowvram_model_memory
if use_more_vram == 0:
use_more_vram = 1e32
self.model_use_more_vram(use_more_vram)
else:
try:
self.real_model = self.model.patch_model(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, load_weights=load_weights, force_patch_weights=force_patch_weights)
except Exception as e:
self.model.unpatch_model(self.model.offload_device)
self.model_unload()
raise e
if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and self.real_model is not None:
with torch.no_grad():
self.real_model = ipex.optimize(self.real_model.eval(), inplace=True, graph_mode=True, concat_linear=True)
self.weights_loaded = True
return self.real_model
def should_reload_model(self, force_patch_weights=False):
if force_patch_weights and self.model.lowvram_patch_counter() > 0:
return True
return False
def model_unload(self, memory_to_free=None, unpatch_weights=True):
if memory_to_free is not None:
if memory_to_free < self.model.loaded_size():
freed = self.model.partially_unload(self.model.offload_device, memory_to_free)
if freed >= memory_to_free:
return False
self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
self.model.model_patches_to(self.model.offload_device)
self.weights_loaded = self.weights_loaded and not unpatch_weights
self.real_model = None
return True
def model_use_more_vram(self, extra_memory):
return self.model.partially_load(self.device, extra_memory)
def __eq__(self, other):
return self.model is other.model
def use_more_memory(extra_memory, loaded_models, device):
for m in loaded_models:
if m.device == device:
extra_memory -= m.model_use_more_vram(extra_memory)
if extra_memory <= 0:
break
def offloaded_memory(loaded_models, device):
offloaded_mem = 0
for m in loaded_models:
if m.device == device:
offloaded_mem += m.model_offloaded_memory()
return offloaded_mem
WINDOWS = any(platform.win32_ver())
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
if WINDOWS:
EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 #Windows is higher because of the shared vram issue
if args.reserve_vram is not None:
EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024
logging.debug("Reserving {}MB vram for other applications.".format(EXTRA_RESERVED_VRAM / (1024 * 1024)))
def extra_reserved_memory():
return EXTRA_RESERVED_VRAM
def minimum_inference_memory():
return (1024 * 1024 * 1024) * 0.8 + extra_reserved_memory()
def unload_model_clones(model, unload_weights_only=True, force_unload=True):
to_unload = []
for i in range(len(current_loaded_models)):
if model.is_clone(current_loaded_models[i].model):
to_unload = [i] + to_unload
if len(to_unload) == 0:
return True
same_weights = 0
for i in to_unload:
if model.clone_has_same_weights(current_loaded_models[i].model):
same_weights += 1
if same_weights == len(to_unload):
unload_weight = False
else:
unload_weight = True
if not force_unload:
if unload_weights_only and unload_weight == False:
return None
else:
unload_weight = True
for i in to_unload:
logging.debug("unload clone {} {}".format(i, unload_weight))
current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)
return unload_weight
def free_memory(memory_required, device, keep_loaded=[]):
unloaded_model = []
can_unload = []
unloaded_models = []
for i in range(len(current_loaded_models) -1, -1, -1):
shift_model = current_loaded_models[i]
if shift_model.device == device:
if shift_model not in keep_loaded:
can_unload.append((-shift_model.model_offloaded_memory(), sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
shift_model.currently_used = False
for x in sorted(can_unload):
i = x[-1]
memory_to_free = None
if not DISABLE_SMART_MEMORY:
free_mem = get_free_memory(device)
if free_mem > memory_required:
break
memory_to_free = memory_required - free_mem
logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}")
if current_loaded_models[i].model_unload(memory_to_free):
unloaded_model.append(i)
for i in sorted(unloaded_model, reverse=True):
unloaded_models.append(current_loaded_models.pop(i))
if len(unloaded_model) > 0:
soft_empty_cache()
else:
if vram_state != VRAMState.HIGH_VRAM:
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
if mem_free_torch > mem_free_total * 0.25:
soft_empty_cache()
return unloaded_models
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
global vram_state
inference_memory = minimum_inference_memory()
extra_mem = max(inference_memory, memory_required + extra_reserved_memory())
if minimum_memory_required is None:
minimum_memory_required = extra_mem
else:
minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory())
models = set(models)
models_to_load = []
models_already_loaded = []
for x in models:
loaded_model = LoadedModel(x)
loaded = None
try:
loaded_model_index = current_loaded_models.index(loaded_model)
except:
loaded_model_index = None
if loaded_model_index is not None:
loaded = current_loaded_models[loaded_model_index]
if loaded.should_reload_model(force_patch_weights=force_patch_weights): #TODO: cleanup this model reload logic
current_loaded_models.pop(loaded_model_index).model_unload(unpatch_weights=True)
loaded = None
else:
loaded.currently_used = True
models_already_loaded.append(loaded)
if loaded is None:
if hasattr(x, "model"):
logging.info(f"Requested to load {x.model.__class__.__name__}")
models_to_load.append(loaded_model)
if len(models_to_load) == 0:
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_memory(extra_mem + offloaded_memory(models_already_loaded, d), d, models_already_loaded)
free_mem = get_free_memory(d)
if free_mem < minimum_memory_required:
logging.info("Unloading models for lowram load.") #TODO: partial model unloading when this case happens, also handle the opposite case where models can be unlowvramed.
models_to_load = free_memory(minimum_memory_required, d)
logging.info("{} models unloaded.".format(len(models_to_load)))
else:
use_more_memory(free_mem - minimum_memory_required, models_already_loaded, d)
if len(models_to_load) == 0:
return
logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
total_memory_required = {}
for loaded_model in models_to_load:
unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) #unload clones where the weights are different
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
for loaded_model in models_already_loaded:
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
for loaded_model in models_to_load:
weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
if weights_unloaded is not None:
loaded_model.weights_loaded = not weights_unloaded
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(total_memory_required[device] * 1.1 + extra_mem, device, models_already_loaded)
for loaded_model in models_to_load:
model = loaded_model.model
torch_dev = model.load_device
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
lowvram_model_memory = 0
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM) and not force_full_load:
model_size = loaded_model.model_memory_required(torch_dev)
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = max(64 * (1024 * 1024), (current_free_mem - minimum_memory_required), min(current_free_mem * 0.4, current_free_mem - minimum_inference_memory()))
if model_size <= lowvram_model_memory: #only switch to lowvram if really necessary
lowvram_model_memory = 0
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 64 * 1024 * 1024
cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights)
current_loaded_models.insert(0, loaded_model)
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_mem = get_free_memory(d)
if free_mem > minimum_memory_required:
use_more_memory(free_mem - minimum_memory_required, models_already_loaded, d)
return
def load_model_gpu(model):
return load_models_gpu([model])
def loaded_models(only_currently_used=False):
output = []
for m in current_loaded_models:
if only_currently_used:
if not m.currently_used:
continue
output.append(m.model)
return output
def cleanup_models(keep_clone_weights_loaded=False):
to_delete = []
for i in range(len(current_loaded_models)):
#TODO: very fragile function needs improvement
num_refs = sys.getrefcount(current_loaded_models[i].model)
if num_refs <= 2:
if not keep_clone_weights_loaded:
to_delete = [i] + to_delete
#TODO: find a less fragile way to do this.
elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: #references from .real_model + the .model
to_delete = [i] + to_delete
for i in to_delete:
x = current_loaded_models.pop(i)
x.model_unload()
del x
def dtype_size(dtype):
dtype_size = 4
if dtype == torch.float16 or dtype == torch.bfloat16:
dtype_size = 2
elif dtype == torch.float32:
dtype_size = 4
else:
try:
dtype_size = dtype.itemsize
except: #Old pytorch doesn't have .itemsize
pass
return dtype_size
def unet_offload_device():
if vram_state == VRAMState.HIGH_VRAM:
return get_torch_device()
else:
return torch.device("cpu")
def unet_inital_load_device(parameters, dtype):
torch_dev = get_torch_device()
if vram_state == VRAMState.HIGH_VRAM:
return torch_dev
cpu_dev = torch.device("cpu")
if DISABLE_SMART_MEMORY:
return cpu_dev
model_size = dtype_size(dtype) * parameters
mem_dev = get_free_memory(torch_dev)
mem_cpu = get_free_memory(cpu_dev)
if mem_dev > mem_cpu and model_size < mem_dev:
return torch_dev
else:
return cpu_dev
def maximum_vram_for_weights(device=None):
return (get_total_memory(device) * 0.88 - minimum_inference_memory())
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
if model_params < 0:
model_params = 1000000000000000000000
if args.fp32_unet:
return torch.float32
if args.fp64_unet:
return torch.float64
if args.bf16_unet:
return torch.bfloat16
if args.fp16_unet:
return torch.float16
if args.fp8_e4m3fn_unet:
return torch.float8_e4m3fn
if args.fp8_e5m2_unet:
return torch.float8_e5m2
fp8_dtype = None
try:
for dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
if dtype in supported_dtypes:
fp8_dtype = dtype
break
except:
pass
if fp8_dtype is not None:
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
return fp8_dtype
free_model_memory = maximum_vram_for_weights(device)
if model_params * 2 > free_model_memory:
return fp8_dtype
for dt in supported_dtypes:
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params):
if torch.float16 in supported_dtypes:
return torch.float16
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params):
if torch.bfloat16 in supported_dtypes:
return torch.bfloat16
for dt in supported_dtypes:
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params, manual_cast=True):
if torch.float16 in supported_dtypes:
return torch.float16
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params, manual_cast=True):
if torch.bfloat16 in supported_dtypes:
return torch.bfloat16
return torch.float32
# None means no manual cast
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
if weight_dtype == torch.float32 or weight_dtype == torch.float64:
return None
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
if fp16_supported and weight_dtype == torch.float16:
return None
bf16_supported = should_use_bf16(inference_device)
if bf16_supported and weight_dtype == torch.bfloat16:
return None
fp16_supported = should_use_fp16(inference_device, prioritize_performance=True)
for dt in supported_dtypes:
if dt == torch.float16 and fp16_supported:
return torch.float16
if dt == torch.bfloat16 and bf16_supported:
return torch.bfloat16
return torch.float32
def text_encoder_offload_device():
if args.gpu_only:
return get_torch_device()
else:
return torch.device("cpu")
def text_encoder_device():
if args.gpu_only:
return get_torch_device()
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
if should_use_fp16(prioritize_performance=False):
return get_torch_device()
else:
return torch.device("cpu")
else:
return torch.device("cpu")
def text_encoder_initial_device(load_device, offload_device, model_size=0):
if load_device == offload_device or model_size <= 1024 * 1024 * 1024:
return offload_device
if is_device_mps(load_device):
return offload_device
mem_l = get_free_memory(load_device)
mem_o = get_free_memory(offload_device)
if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l:
return load_device
else:
return offload_device
def text_encoder_dtype(device=None):
if args.fp8_e4m3fn_text_enc:
return torch.float8_e4m3fn
elif args.fp8_e5m2_text_enc:
return torch.float8_e5m2
elif args.fp16_text_enc:
return torch.float16
elif args.fp32_text_enc:
return torch.float32
if is_device_cpu(device):
return torch.float16
return torch.float16
def intermediate_device():
if args.gpu_only:
return get_torch_device()
else:
return torch.device("cpu")
def vae_device():
if args.cpu_vae:
return torch.device("cpu")
return get_torch_device()
def vae_offload_device():
if args.gpu_only:
return get_torch_device()
else:
return torch.device("cpu")
def vae_dtype(device=None, allowed_dtypes=[]):
global VAE_DTYPES
if args.fp16_vae:
return torch.float16
elif args.bf16_vae:
return torch.bfloat16
elif args.fp32_vae:
return torch.float32
for d in allowed_dtypes:
if d == torch.float16 and should_use_fp16(device, prioritize_performance=False):
return d
if d in VAE_DTYPES:
return d
return VAE_DTYPES[0]
def get_autocast_device(dev):
if hasattr(dev, 'type'):
return dev.type
return "cuda"
def supports_dtype(device, dtype): #TODO
if dtype == torch.float32:
return True
if is_device_cpu(device):
return False
if dtype == torch.float16:
return True
if dtype == torch.bfloat16:
return True
return False
def supports_cast(device, dtype): #TODO
if dtype == torch.float32:
return True
if dtype == torch.float16:
return True
if directml_enabled: #TODO: test this
return False
if dtype == torch.bfloat16:
return True
if is_device_mps(device):
return False
if dtype == torch.float8_e4m3fn:
return True
if dtype == torch.float8_e5m2:
return True
return False
def pick_weight_dtype(dtype, fallback_dtype, device=None):
if dtype is None:
dtype = fallback_dtype
elif dtype_size(dtype) > dtype_size(fallback_dtype):
dtype = fallback_dtype
if not supports_cast(device, dtype):
dtype = fallback_dtype
return dtype
def device_supports_non_blocking(device):
if is_device_mps(device):
return False #pytorch bug? mps doesn't support non blocking
if is_intel_xpu():
return False
if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
return False
if directml_enabled:
return False
return True
def device_should_use_non_blocking(device):
if not device_supports_non_blocking(device):
return False
return False
# return True #TODO: figure out why this causes memory issues on Nvidia and possibly others
def force_channels_last():
if args.force_channels_last:
return True
#TODO
return False
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
if device is None or weight.device == device:
if not copy:
if dtype is None or weight.dtype == dtype:
return weight
return weight.to(dtype=dtype, copy=copy)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
return r
def cast_to_device(tensor, device, dtype, copy=False):
non_blocking = device_supports_non_blocking(device)
return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy)
def xformers_enabled():
global directml_enabled
global cpu_state
if cpu_state != CPUState.GPU:
return False
if is_intel_xpu():
return False
if directml_enabled:
return False
return XFORMERS_IS_AVAILABLE
def xformers_enabled_vae():
enabled = xformers_enabled()
if not enabled:
return False
return XFORMERS_ENABLED_VAE
def pytorch_attention_enabled():
global ENABLE_PYTORCH_ATTENTION
return ENABLE_PYTORCH_ATTENTION
def pytorch_attention_flash_attention():
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
#TODO: more reliable way of checking for flash attention?
if is_nvidia(): #pytorch flash attention only works on Nvidia
return True
if is_intel_xpu():
return True
return False
def force_upcast_attention_dtype():
upcast = args.force_upcast_attention
try:
macos_version = tuple(int(n) for n in platform.mac_ver()[0].split("."))
if (14, 5) <= macos_version <= (15, 2): # black image bug on recent versions of macOS
upcast = True
except:
pass
if upcast:
return torch.float32
else:
return None
def get_free_memory(dev=None, torch_free_too=False):
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_free_total = psutil.virtual_memory().available
mem_free_torch = mem_free_total
else:
if directml_enabled:
mem_free_total = 1024 * 1024 * 1024 #TODO
mem_free_torch = mem_free_total
elif is_intel_xpu():
stats = torch.xpu.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_torch = mem_reserved - mem_active
mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
mem_free_total = mem_free_xpu + mem_free_torch
else:
stats = torch.cuda.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
if torch_free_too:
return (mem_free_total, mem_free_torch)
else:
return mem_free_total
def cpu_mode():
global cpu_state
return cpu_state == CPUState.CPU
def mps_mode():
global cpu_state
return cpu_state == CPUState.MPS
def is_device_type(device, type):
if hasattr(device, 'type'):
if (device.type == type):
return True
return False
def is_device_cpu(device):
return is_device_type(device, 'cpu')
def is_device_mps(device):
return is_device_type(device, 'mps')
def is_device_cuda(device):
return is_device_type(device, 'cuda')
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
global directml_enabled
if device is not None:
if is_device_cpu(device):
return False
if FORCE_FP16:
return True
if device is not None:
if is_device_mps(device):
return True
if FORCE_FP32:
return False
if directml_enabled:
return False
if mps_mode():
return True
if cpu_mode():
return False
if is_intel_xpu():
return True
if torch.version.hip:
return True
props = torch.cuda.get_device_properties(device)
if props.major >= 8:
return True
if props.major < 6:
return False
#FP16 is confirmed working on a 1080 (GP104) and on latest pytorch actually seems faster than fp32
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
for x in nvidia_10_series:
if x in props.name.lower():
if WINDOWS or manual_cast:
return True
else:
return False #weird linux behavior where fp32 is faster
if manual_cast:
free_model_memory = maximum_vram_for_weights(device)
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
if props.major < 7:
return False
#FP16 is just broken on these cards
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
for x in nvidia_16_series:
if x in props.name:
return False
return True
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
if device is not None:
if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
return False
if device is not None:
if is_device_mps(device):
return True
if FORCE_FP32:
return False
if directml_enabled:
return False
if mps_mode():
return True
if cpu_mode():
return False
if is_intel_xpu():
return True
props = torch.cuda.get_device_properties(device)
if props.major >= 8:
return True
bf16_works = torch.cuda.is_bf16_supported()
if bf16_works or manual_cast:
free_model_memory = maximum_vram_for_weights(device)
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
return False
def supports_fp8_compute(device=None):
if not is_nvidia():
return False
props = torch.cuda.get_device_properties(device)
if props.major >= 9:
return True
if props.major < 8:
return False
if props.minor < 9:
return False
if int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) < 3):
return False
if WINDOWS:
if (int(torch_version[0]) == 2 and int(torch_version[2]) < 4):
return False
return True
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:
torch.mps.empty_cache()
elif is_intel_xpu():
torch.xpu.empty_cache()
elif torch.cuda.is_available():
if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def unload_all_models():
free_memory(1e30, get_torch_device())
def resolve_lowvram_weight(weight, model, key): #TODO: remove
print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.")
return weight
#TODO: might be cleaner to put this somewhere else
import threading
class InterruptProcessingException(Exception):
pass
interrupt_processing_mutex = threading.RLock()
interrupt_processing = False
def interrupt_current_processing(value=True):
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
interrupt_processing = value
def processing_interrupted():
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
return interrupt_processing
def throw_exception_if_processing_interrupted():
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
if interrupt_processing:
interrupt_processing = False
raise InterruptProcessingException()