Spaces:
Runtime error
Runtime error
import os | |
from transformers import CLIPTokenizer | |
import comfy.ops | |
import torch | |
import traceback | |
import zipfile | |
from . import model_management | |
import comfy.clip_model | |
import json | |
import logging | |
import numbers | |
def gen_empty_tokens(special_tokens, length): | |
start_token = special_tokens.get("start", None) | |
end_token = special_tokens.get("end", None) | |
pad_token = special_tokens.get("pad") | |
output = [] | |
if start_token is not None: | |
output.append(start_token) | |
if end_token is not None: | |
output.append(end_token) | |
output += [pad_token] * (length - len(output)) | |
return output | |
class ClipTokenWeightEncoder: | |
def encode_token_weights(self, token_weight_pairs): | |
to_encode = list() | |
max_token_len = 0 | |
has_weights = False | |
for x in token_weight_pairs: | |
tokens = list(map(lambda a: a[0], x)) | |
max_token_len = max(len(tokens), max_token_len) | |
has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x)) | |
to_encode.append(tokens) | |
sections = len(to_encode) | |
if has_weights or sections == 0: | |
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len)) | |
o = self.encode(to_encode) | |
out, pooled = o[:2] | |
if pooled is not None: | |
first_pooled = pooled[0:1].to(model_management.intermediate_device()) | |
else: | |
first_pooled = pooled | |
output = [] | |
for k in range(0, sections): | |
z = out[k:k+1] | |
if has_weights: | |
z_empty = out[-1] | |
for i in range(len(z)): | |
for j in range(len(z[i])): | |
weight = token_weight_pairs[k][j][1] | |
if weight != 1.0: | |
z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j] | |
output.append(z) | |
if (len(output) == 0): | |
r = (out[-1:].to(model_management.intermediate_device()), first_pooled) | |
else: | |
r = (torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled) | |
if len(o) > 2: | |
extra = {} | |
for k in o[2]: | |
v = o[2][k] | |
if k == "attention_mask": | |
v = v[:sections].flatten().unsqueeze(dim=0).to(model_management.intermediate_device()) | |
extra[k] = v | |
r = r + (extra,) | |
return r | |
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): | |
LAYERS = [ | |
"last", | |
"pooled", | |
"hidden" | |
] | |
def __init__(self, device="cpu", max_length=77, | |
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel, | |
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False, | |
return_projected_pooled=True, return_attention_masks=False, model_options={}): # clip-vit-base-patch32 | |
super().__init__() | |
assert layer in self.LAYERS | |
if textmodel_json_config is None: | |
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json") | |
with open(textmodel_json_config) as f: | |
config = json.load(f) | |
operations = model_options.get("custom_operations", None) | |
scaled_fp8 = None | |
if operations is None: | |
scaled_fp8 = model_options.get("scaled_fp8", None) | |
if scaled_fp8 is not None: | |
operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8) | |
else: | |
operations = comfy.ops.manual_cast | |
self.operations = operations | |
self.transformer = model_class(config, dtype, device, self.operations) | |
if scaled_fp8 is not None: | |
self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8)) | |
self.num_layers = self.transformer.num_layers | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
self.layer_idx = None | |
self.special_tokens = special_tokens | |
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055)) | |
self.enable_attention_masks = enable_attention_masks | |
self.zero_out_masked = zero_out_masked | |
self.layer_norm_hidden_state = layer_norm_hidden_state | |
self.return_projected_pooled = return_projected_pooled | |
self.return_attention_masks = return_attention_masks | |
if layer == "hidden": | |
assert layer_idx is not None | |
assert abs(layer_idx) < self.num_layers | |
self.set_clip_options({"layer": layer_idx}) | |
self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled) | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
#self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def set_clip_options(self, options): | |
layer_idx = options.get("layer", self.layer_idx) | |
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled) | |
if layer_idx is None or abs(layer_idx) > self.num_layers: | |
self.layer = "last" | |
else: | |
self.layer = "hidden" | |
self.layer_idx = layer_idx | |
def reset_clip_options(self): | |
self.layer = self.options_default[0] | |
self.layer_idx = self.options_default[1] | |
self.return_projected_pooled = self.options_default[2] | |
def set_up_textual_embeddings(self, tokens, current_embeds): | |
out_tokens = [] | |
next_new_token = token_dict_size = current_embeds.weight.shape[0] | |
embedding_weights = [] | |
for x in tokens: | |
tokens_temp = [] | |
for y in x: | |
if isinstance(y, numbers.Integral): | |
tokens_temp += [int(y)] | |
else: | |
if y.shape[0] == current_embeds.weight.shape[1]: | |
embedding_weights += [y] | |
tokens_temp += [next_new_token] | |
next_new_token += 1 | |
else: | |
logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1])) | |
while len(tokens_temp) < len(x): | |
tokens_temp += [self.special_tokens["pad"]] | |
out_tokens += [tokens_temp] | |
n = token_dict_size | |
if len(embedding_weights) > 0: | |
new_embedding = self.operations.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype) | |
new_embedding.weight[:token_dict_size] = current_embeds.weight | |
for x in embedding_weights: | |
new_embedding.weight[n] = x | |
n += 1 | |
self.transformer.set_input_embeddings(new_embedding) | |
processed_tokens = [] | |
for x in out_tokens: | |
processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one | |
return processed_tokens | |
def forward(self, tokens): | |
backup_embeds = self.transformer.get_input_embeddings() | |
device = backup_embeds.weight.device | |
tokens = self.set_up_textual_embeddings(tokens, backup_embeds) | |
tokens = torch.LongTensor(tokens).to(device) | |
attention_mask = None | |
if self.enable_attention_masks or self.zero_out_masked or self.return_attention_masks: | |
attention_mask = torch.zeros_like(tokens) | |
end_token = self.special_tokens.get("end", -1) | |
for x in range(attention_mask.shape[0]): | |
for y in range(attention_mask.shape[1]): | |
attention_mask[x, y] = 1 | |
if tokens[x, y] == end_token: | |
break | |
attention_mask_model = None | |
if self.enable_attention_masks: | |
attention_mask_model = attention_mask | |
outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32) | |
self.transformer.set_input_embeddings(backup_embeds) | |
if self.layer == "last": | |
z = outputs[0].float() | |
else: | |
z = outputs[1].float() | |
if self.zero_out_masked: | |
z *= attention_mask.unsqueeze(-1).float() | |
pooled_output = None | |
if len(outputs) >= 3: | |
if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None: | |
pooled_output = outputs[3].float() | |
elif outputs[2] is not None: | |
pooled_output = outputs[2].float() | |
extra = {} | |
if self.return_attention_masks: | |
extra["attention_mask"] = attention_mask | |
if len(extra) > 0: | |
return z, pooled_output, extra | |
return z, pooled_output | |
def encode(self, tokens): | |
return self(tokens) | |
def load_sd(self, sd): | |
return self.transformer.load_state_dict(sd, strict=False) | |
def parse_parentheses(string): | |
result = [] | |
current_item = "" | |
nesting_level = 0 | |
for char in string: | |
if char == "(": | |
if nesting_level == 0: | |
if current_item: | |
result.append(current_item) | |
current_item = "(" | |
else: | |
current_item = "(" | |
else: | |
current_item += char | |
nesting_level += 1 | |
elif char == ")": | |
nesting_level -= 1 | |
if nesting_level == 0: | |
result.append(current_item + ")") | |
current_item = "" | |
else: | |
current_item += char | |
else: | |
current_item += char | |
if current_item: | |
result.append(current_item) | |
return result | |
def token_weights(string, current_weight): | |
a = parse_parentheses(string) | |
out = [] | |
for x in a: | |
weight = current_weight | |
if len(x) >= 2 and x[-1] == ')' and x[0] == '(': | |
x = x[1:-1] | |
xx = x.rfind(":") | |
weight *= 1.1 | |
if xx > 0: | |
try: | |
weight = float(x[xx+1:]) | |
x = x[:xx] | |
except: | |
pass | |
out += token_weights(x, weight) | |
else: | |
out += [(x, current_weight)] | |
return out | |
def escape_important(text): | |
text = text.replace("\\)", "\0\1") | |
text = text.replace("\\(", "\0\2") | |
return text | |
def unescape_important(text): | |
text = text.replace("\0\1", ")") | |
text = text.replace("\0\2", "(") | |
return text | |
def safe_load_embed_zip(embed_path): | |
with zipfile.ZipFile(embed_path) as myzip: | |
names = list(filter(lambda a: "data/" in a, myzip.namelist())) | |
names.reverse() | |
for n in names: | |
with myzip.open(n) as myfile: | |
data = myfile.read() | |
number = len(data) // 4 | |
length_embed = 1024 #sd2.x | |
if number < 768: | |
continue | |
if number % 768 == 0: | |
length_embed = 768 #sd1.x | |
num_embeds = number // length_embed | |
embed = torch.frombuffer(data, dtype=torch.float) | |
out = embed.reshape((num_embeds, length_embed)).clone() | |
del embed | |
return out | |
def expand_directory_list(directories): | |
dirs = set() | |
for x in directories: | |
dirs.add(x) | |
for root, subdir, file in os.walk(x, followlinks=True): | |
dirs.add(root) | |
return list(dirs) | |
def bundled_embed(embed, prefix, suffix): #bundled embedding in lora format | |
i = 0 | |
out_list = [] | |
for k in embed: | |
if k.startswith(prefix) and k.endswith(suffix): | |
out_list.append(embed[k]) | |
if len(out_list) == 0: | |
return None | |
return torch.cat(out_list, dim=0) | |
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None): | |
if isinstance(embedding_directory, str): | |
embedding_directory = [embedding_directory] | |
embedding_directory = expand_directory_list(embedding_directory) | |
valid_file = None | |
for embed_dir in embedding_directory: | |
embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name)) | |
embed_dir = os.path.abspath(embed_dir) | |
try: | |
if os.path.commonpath((embed_dir, embed_path)) != embed_dir: | |
continue | |
except: | |
continue | |
if not os.path.isfile(embed_path): | |
extensions = ['.safetensors', '.pt', '.bin'] | |
for x in extensions: | |
t = embed_path + x | |
if os.path.isfile(t): | |
valid_file = t | |
break | |
else: | |
valid_file = embed_path | |
if valid_file is not None: | |
break | |
if valid_file is None: | |
return None | |
embed_path = valid_file | |
embed_out = None | |
try: | |
if embed_path.lower().endswith(".safetensors"): | |
import safetensors.torch | |
embed = safetensors.torch.load_file(embed_path, device="cpu") | |
else: | |
if 'weights_only' in torch.load.__code__.co_varnames: | |
try: | |
embed = torch.load(embed_path, weights_only=True, map_location="cpu") | |
except: | |
embed_out = safe_load_embed_zip(embed_path) | |
else: | |
embed = torch.load(embed_path, map_location="cpu") | |
except Exception as e: | |
logging.warning("{}\n\nerror loading embedding, skipping loading: {}".format(traceback.format_exc(), embedding_name)) | |
return None | |
if embed_out is None: | |
if 'string_to_param' in embed: | |
values = embed['string_to_param'].values() | |
embed_out = next(iter(values)) | |
elif isinstance(embed, list): | |
out_list = [] | |
for x in range(len(embed)): | |
for k in embed[x]: | |
t = embed[x][k] | |
if t.shape[-1] != embedding_size: | |
continue | |
out_list.append(t.reshape(-1, t.shape[-1])) | |
embed_out = torch.cat(out_list, dim=0) | |
elif embed_key is not None and embed_key in embed: | |
embed_out = embed[embed_key] | |
else: | |
embed_out = bundled_embed(embed, 'bundle_emb.', '.string_to_param.*') | |
if embed_out is None: | |
embed_out = bundled_embed(embed, 'bundle_emb.', '.{}'.format(embed_key)) | |
if embed_out is None: | |
values = embed.values() | |
embed_out = next(iter(values)) | |
return embed_out | |
class SDTokenizer: | |
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True, min_length=None, pad_token=None, tokenizer_data={}): | |
if tokenizer_path is None: | |
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") | |
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path) | |
self.max_length = max_length | |
self.min_length = min_length | |
empty = self.tokenizer('')["input_ids"] | |
if has_start_token: | |
self.tokens_start = 1 | |
self.start_token = empty[0] | |
self.end_token = empty[1] | |
else: | |
self.tokens_start = 0 | |
self.start_token = None | |
self.end_token = empty[0] | |
if pad_token is not None: | |
self.pad_token = pad_token | |
elif pad_with_end: | |
self.pad_token = self.end_token | |
else: | |
self.pad_token = 0 | |
self.pad_with_end = pad_with_end | |
self.pad_to_max_length = pad_to_max_length | |
vocab = self.tokenizer.get_vocab() | |
self.inv_vocab = {v: k for k, v in vocab.items()} | |
self.embedding_directory = embedding_directory | |
self.max_word_length = 8 | |
self.embedding_identifier = "embedding:" | |
self.embedding_size = embedding_size | |
self.embedding_key = embedding_key | |
def _try_get_embedding(self, embedding_name:str): | |
''' | |
Takes a potential embedding name and tries to retrieve it. | |
Returns a Tuple consisting of the embedding and any leftover string, embedding can be None. | |
''' | |
embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key) | |
if embed is None: | |
stripped = embedding_name.strip(',') | |
if len(stripped) < len(embedding_name): | |
embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key) | |
return (embed, embedding_name[len(stripped):]) | |
return (embed, "") | |
def tokenize_with_weights(self, text:str, return_word_ids=False): | |
''' | |
Takes a prompt and converts it to a list of (token, weight, word id) elements. | |
Tokens can both be integer tokens and pre computed CLIP tensors. | |
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens. | |
Returned list has the dimensions NxM where M is the input size of CLIP | |
''' | |
text = escape_important(text) | |
parsed_weights = token_weights(text, 1.0) | |
#tokenize words | |
tokens = [] | |
for weighted_segment, weight in parsed_weights: | |
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ') | |
to_tokenize = [x for x in to_tokenize if x != ""] | |
for word in to_tokenize: | |
#if we find an embedding, deal with the embedding | |
if word.startswith(self.embedding_identifier) and self.embedding_directory is not None: | |
embedding_name = word[len(self.embedding_identifier):].strip('\n') | |
embed, leftover = self._try_get_embedding(embedding_name) | |
if embed is None: | |
logging.warning(f"warning, embedding:{embedding_name} does not exist, ignoring") | |
else: | |
if len(embed.shape) == 1: | |
tokens.append([(embed, weight)]) | |
else: | |
tokens.append([(embed[x], weight) for x in range(embed.shape[0])]) | |
#if we accidentally have leftover text, continue parsing using leftover, else move on to next word | |
if leftover != "": | |
word = leftover | |
else: | |
continue | |
#parse word | |
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]]) | |
#reshape token array to CLIP input size | |
batched_tokens = [] | |
batch = [] | |
if self.start_token is not None: | |
batch.append((self.start_token, 1.0, 0)) | |
batched_tokens.append(batch) | |
for i, t_group in enumerate(tokens): | |
#determine if we're going to try and keep the tokens in a single batch | |
is_large = len(t_group) >= self.max_word_length | |
while len(t_group) > 0: | |
if len(t_group) + len(batch) > self.max_length - 1: | |
remaining_length = self.max_length - len(batch) - 1 | |
#break word in two and add end token | |
if is_large: | |
batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]]) | |
batch.append((self.end_token, 1.0, 0)) | |
t_group = t_group[remaining_length:] | |
#add end token and pad | |
else: | |
batch.append((self.end_token, 1.0, 0)) | |
if self.pad_to_max_length: | |
batch.extend([(self.pad_token, 1.0, 0)] * (remaining_length)) | |
#start new batch | |
batch = [] | |
if self.start_token is not None: | |
batch.append((self.start_token, 1.0, 0)) | |
batched_tokens.append(batch) | |
else: | |
batch.extend([(t,w,i+1) for t,w in t_group]) | |
t_group = [] | |
#fill last batch | |
batch.append((self.end_token, 1.0, 0)) | |
if self.pad_to_max_length: | |
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch))) | |
if self.min_length is not None and len(batch) < self.min_length: | |
batch.extend([(self.pad_token, 1.0, 0)] * (self.min_length - len(batch))) | |
if not return_word_ids: | |
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens] | |
return batched_tokens | |
def untokenize(self, token_weight_pair): | |
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair)) | |
def state_dict(self): | |
return {} | |
class SD1Tokenizer: | |
def __init__(self, embedding_directory=None, tokenizer_data={}, clip_name="l", tokenizer=SDTokenizer): | |
self.clip_name = clip_name | |
self.clip = "clip_{}".format(self.clip_name) | |
tokenizer = tokenizer_data.get("{}_tokenizer_class".format(self.clip), tokenizer) | |
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)) | |
def tokenize_with_weights(self, text:str, return_word_ids=False): | |
out = {} | |
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids) | |
return out | |
def untokenize(self, token_weight_pair): | |
return getattr(self, self.clip).untokenize(token_weight_pair) | |
def state_dict(self): | |
return {} | |
class SD1CheckpointClipModel(SDClipModel): | |
def __init__(self, device="cpu", dtype=None, model_options={}): | |
super().__init__(device=device, return_projected_pooled=False, dtype=dtype, model_options=model_options) | |
class SD1ClipModel(torch.nn.Module): | |
def __init__(self, device="cpu", dtype=None, model_options={}, clip_name="l", clip_model=SD1CheckpointClipModel, name=None, **kwargs): | |
super().__init__() | |
if name is not None: | |
self.clip_name = name | |
self.clip = "{}".format(self.clip_name) | |
else: | |
self.clip_name = clip_name | |
self.clip = "clip_{}".format(self.clip_name) | |
clip_model = model_options.get("{}_class".format(self.clip), clip_model) | |
setattr(self, self.clip, clip_model(device=device, dtype=dtype, model_options=model_options, **kwargs)) | |
self.dtypes = set() | |
if dtype is not None: | |
self.dtypes.add(dtype) | |
def set_clip_options(self, options): | |
getattr(self, self.clip).set_clip_options(options) | |
def reset_clip_options(self): | |
getattr(self, self.clip).reset_clip_options() | |
def encode_token_weights(self, token_weight_pairs): | |
token_weight_pairs = token_weight_pairs[self.clip_name] | |
out = getattr(self, self.clip).encode_token_weights(token_weight_pairs) | |
return out | |
def load_sd(self, sd): | |
return getattr(self, self.clip).load_sd(sd) | |