Spaces:
Running
Running
File size: 22,310 Bytes
e80aec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
import asyncio
import json
import sys
import uuid
import base64
import re
import os
import argparse
from datetime import datetime, timezone
from typing import List, Optional
import httpx
import uvicorn
from fastapi import (
BackgroundTasks,
FastAPI,
HTTPException,
Request,
Response,
status,
)
from fastapi.responses import HTMLResponse, JSONResponse, StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from bearer_token import BearerTokenGenerator
# 模型列表
MODELS = ["gpt-4o", "gpt-4o-mini", "claude-3-5-sonnet", "claude"]
# 默认端口
INITIAL_PORT = 3000
# 外部API的URL
EXTERNAL_API_URL = "https://api.chaton.ai/chats/stream"
# 初始化FastAPI应用
app = FastAPI()
# 添加CORS中间件
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # 允许所有来源
allow_credentials=True,
allow_methods=["GET", "POST", "OPTIONS"], # 允许GET, POST, OPTIONS方法
allow_headers=["Content-Type", "Authorization"], # 允许的头部
)
# 挂载静态文件路由以提供 images 目录的内容
app.mount("/images", StaticFiles(directory="images"), name="images")
# 辅助函数
def send_error_response(message: str, status_code: int = 400):
"""构建错误响应,并确保包含CORS头"""
error_json = {"error": message}
headers = {
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "GET, POST, OPTIONS",
"Access-Control-Allow-Headers": "Content-Type, Authorization",
}
return JSONResponse(status_code=status_code, content=error_json, headers=headers)
def extract_path_from_markdown(markdown: str) -> Optional[str]:
"""
提取 Markdown 图片链接中的路径,匹配以 https://spc.unk/ 开头的 URL
"""
pattern = re.compile(r'!\[.*?\]\(https://spc\.unk/(.*?)\)')
match = pattern.search(markdown)
if match:
return match.group(1)
return None
async def fetch_get_url_from_storage(storage_url: str) -> Optional[str]:
"""
从 storage URL 获取 JSON 并提取 getUrl
"""
async with httpx.AsyncClient() as client:
try:
response = await client.get(storage_url)
if response.status_code != 200:
print(f"获取 storage URL 失败,状态码: {response.status_code}")
return None
json_response = response.json()
return json_response.get("getUrl")
except Exception as e:
print(f"Error fetching getUrl from storage: {e}")
return None
async def download_image(image_url: str) -> Optional[bytes]:
"""
下载图像
"""
async with httpx.AsyncClient() as client:
try:
response = await client.get(image_url)
if response.status_code == 200:
return response.content
else:
print(f"下载图像失败,状态码: {response.status_code}")
return None
except Exception as e:
print(f"Error downloading image: {e}")
return None
def save_base64_image(base64_str: str, images_dir: str = "images") -> str:
"""
将Base64编码的图片保存到images目录,返回文件名
"""
if not os.path.exists(images_dir):
os.makedirs(images_dir)
image_data = base64.b64decode(base64_str)
filename = f"{uuid.uuid4()}.png" # 默认保存为png格式
file_path = os.path.join(images_dir, filename)
with open(file_path, "wb") as f:
f.write(image_data)
return filename
def is_base64_image(url: str) -> bool:
"""
判断URL是否为Base64编码的图片
"""
return url.startswith("data:image/")
# 根路径GET请求处理
@app.get("/", response_class=HTMLResponse)
async def read_root():
"""返回欢迎页面"""
html_content = """
<html>
<head>
<title>Welcome to API</title>
</head>
<body>
<h1>Welcome to API</h1>
<p>This API is used to interact with the ChatGPT model. You can send messages to the model and receive responses.</p>
</body>
</html>
"""
return HTMLResponse(content=html_content, status_code=200)
# 聊天完成处理
@app.post("/v1/chat/completions")
async def chat_completions(request: Request, background_tasks: BackgroundTasks):
"""
处理聊天完成请求
"""
try:
request_body = await request.json()
except json.JSONDecodeError:
raise HTTPException(status_code=400, detail="Invalid JSON")
# 打印接收到的请求
print("Received Completion JSON:", json.dumps(request_body, ensure_ascii=False))
# 处理消息内容
messages = request_body.get("messages", [])
temperature = request_body.get("temperature", 1.0)
top_p = request_body.get("top_p", 1.0)
max_tokens = request_body.get("max_tokens", 8000)
model = request_body.get("model", "gpt-4o")
is_stream = request_body.get("stream", False) # 获取 stream 字段
has_image = False
has_text = False
# 清理和提取消息内容
cleaned_messages = []
for message in messages:
content = message.get("content", "")
if isinstance(content, list):
text_parts = []
images = []
for item in content:
if "text" in item:
text_parts.append(item.get("text", ""))
elif "image_url" in item:
has_image = True
image_info = item.get("image_url", {})
url = image_info.get("url", "")
if is_base64_image(url):
# 解码并保存图片
base64_str = url.split(",")[1]
filename = save_base64_image(base64_str)
base_url = app.state.base_url
image_url = f"{base_url}/images/{filename}"
images.append({"data": image_url})
else:
images.append({"data": url})
extracted_content = " ".join(text_parts).strip()
if extracted_content:
has_text = True
message["content"] = extracted_content
if images:
message["images"] = images
cleaned_messages.append(message)
print("Extracted:", extracted_content)
else:
if images:
has_image = True
message["content"] = ""
message["images"] = images
cleaned_messages.append(message)
print("Extracted image only.")
else:
print("Deleted message with empty content.")
elif isinstance(content, str):
content_str = content.strip()
if content_str:
has_text = True
message["content"] = content_str
cleaned_messages.append(message)
print("Retained content:", content_str)
else:
print("Deleted message with empty content.")
else:
print("Deleted non-expected type of content message.")
if not cleaned_messages:
raise HTTPException(status_code=400, detail="所有消息的内容均为空。")
# 验证模型
if model not in MODELS:
model = "gpt-4o"
# 构建新的请求JSON
new_request_json = {
"function_image_gen": False,
"function_web_search": True,
"max_tokens": max_tokens,
"model": model,
"source": "chat/free",
"temperature": temperature,
"top_p": top_p,
"messages": cleaned_messages,
}
modified_request_body = json.dumps(new_request_json, ensure_ascii=False)
print("Modified Request JSON:", modified_request_body)
# 获取Bearer Token
tmp_token = BearerTokenGenerator.get_bearer(modified_request_body)
if not tmp_token:
raise HTTPException(status_code=500, detail="无法生成 Bearer Token")
bearer_token, formatted_date = tmp_token
headers = {
"Date": formatted_date,
"Client-time-zone": "-05:00",
"Authorization": bearer_token,
"User-Agent": "ChatOn_Android/1.53.502",
"Accept-Language": "en-US",
"X-Cl-Options": "hb",
"Content-Type": "application/json; charset=UTF-8",
}
if is_stream:
# 流式响应处理
async def event_generator():
async with httpx.AsyncClient(timeout=None) as client_stream:
try:
async with client_stream.stream("POST", EXTERNAL_API_URL, headers=headers, content=modified_request_body) as streamed_response:
async for line in streamed_response.aiter_lines():
if line.startswith("data: "):
data = line[6:].strip()
if data == "[DONE]":
# 通知客户端流结束
yield "data: [DONE]\n\n"
break
try:
sse_json = json.loads(data)
if "choices" in sse_json:
for choice in sse_json["choices"]:
delta = choice.get("delta", {})
content = delta.get("content")
if content:
new_sse_json = {
"choices": [
{
"index": choice.get("index", 0),
"delta": {"content": content},
}
],
"created": sse_json.get(
"created", int(datetime.now(timezone.utc).timestamp())
),
"id": sse_json.get(
"id", str(uuid.uuid4())
),
"model": sse_json.get("model", "gpt-4o"),
"system_fingerprint": f"fp_{uuid.uuid4().hex[:12]}",
}
new_sse_line = f"data: {json.dumps(new_sse_json, ensure_ascii=False)}\n\n"
yield new_sse_line
except json.JSONDecodeError:
print("JSON解析错误")
continue
except httpx.RequestError as exc:
print(f"外部API请求失败: {exc}")
yield f"data: {{\"error\": \"外部API请求失败: {str(exc)}\"}}\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
# CORS头已通过中间件处理,无需在这里重复添加
},
)
else:
# 非流式响应处理
async with httpx.AsyncClient(timeout=None) as client:
try:
response = await client.post(
EXTERNAL_API_URL,
headers=headers,
content=modified_request_body,
timeout=None
)
if response.status_code != 200:
raise HTTPException(
status_code=response.status_code,
detail=f"API 错误: {response.status_code}",
)
sse_lines = response.text.splitlines()
content_builder = ""
images_urls = []
for line in sse_lines:
if line.startswith("data: "):
data = line[6:].strip()
if data == "[DONE]":
break
try:
sse_json = json.loads(data)
if "choices" in sse_json:
for choice in sse_json["choices"]:
if "delta" in choice:
delta = choice["delta"]
if "content" in delta:
content_builder += delta["content"]
except json.JSONDecodeError:
print("JSON解析错误")
continue
openai_response = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now(timezone.utc).timestamp()),
"model": model,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": content_builder,
},
"finish_reason": "stop",
}
],
}
# 处理图片(如果有)
if has_image:
images = []
for message in cleaned_messages:
if "images" in message:
for img in message["images"]:
images.append({"data": img["data"]})
openai_response["choices"][0]["message"]["images"] = images
return JSONResponse(content=openai_response, status_code=200)
except httpx.RequestError as exc:
raise HTTPException(status_code=500, detail=f"请求失败: {str(exc)}")
except Exception as exc:
raise HTTPException(status_code=500, detail=f"内部服务器错误: {str(exc)}")
# 图像生成处理
@app.post("/v1/images/generations")
async def images_generations(request: Request):
"""
处理图像生成请求
"""
try:
request_body = await request.json()
except json.JSONDecodeError:
return send_error_response("Invalid JSON", status_code=400)
print("Received Image Generations JSON:", json.dumps(request_body, ensure_ascii=False))
# 验证必需的字段
if "prompt" not in request_body:
return send_error_response("缺少必需的字段: prompt", status_code=400)
user_prompt = request_body.get("prompt", "").strip()
response_format = request_body.get("response_format", "b64_json").strip()
if not user_prompt:
return send_error_response("Prompt 不能为空。", status_code=400)
print(f"Prompt: {user_prompt}")
# 构建新的 TextToImage JSON 请求体
text_to_image_json = {
"function_image_gen": True,
"function_web_search": True,
"image_aspect_ratio": "1:1",
"image_style": "photographic", # 暂时固定 image_style
"max_tokens": 8000,
"messages": [
{
"content": "You are a helpful artist, please based on imagination draw a picture.",
"role": "system"
},
{
"content": "Draw: " + user_prompt,
"role": "user"
}
],
"model": "gpt-4o", # 固定 model,只能gpt-4o或gpt-4o-mini
"source": "chat/pro_image" # 固定 source
}
modified_request_body = json.dumps(text_to_image_json, ensure_ascii=False)
print("Modified Request JSON:", modified_request_body)
# 获取Bearer Token
tmp_token = BearerTokenGenerator.get_bearer(modified_request_body, path="/chats/stream")
if not tmp_token:
return send_error_response("无法生成 Bearer Token", status_code=500)
bearer_token, formatted_date = tmp_token
headers = {
"Date": formatted_date,
"Client-time-zone": "-05:00",
"Authorization": bearer_token,
"User-Agent": "ChatOn_Android/1.53.502",
"Accept-Language": "en-US",
"X-Cl-Options": "hb",
"Content-Type": "application/json; charset=UTF-8",
}
async with httpx.AsyncClient(timeout=None) as client:
try:
response = await client.post(
EXTERNAL_API_URL, headers=headers, content=modified_request_body, timeout=None
)
if response.status_code != 200:
return send_error_response(f"API 错误: {response.status_code}", status_code=500)
# 初始化用于拼接 URL 的字符串
url_builder = ""
# 读取 SSE 流并拼接 URL
async for line in response.aiter_lines():
if line.startswith("data: "):
data = line[6:].strip()
if data == "[DONE]":
break
try:
sse_json = json.loads(data)
if "choices" in sse_json:
for choice in sse_json["choices"]:
delta = choice.get("delta", {})
content = delta.get("content")
if content:
url_builder += content
except json.JSONDecodeError:
print("JSON解析错误")
continue
image_markdown = url_builder
# Step 1: 检查Markdown文本是否为空
if not image_markdown:
print("无法从 SSE 流中构建图像 Markdown。")
return send_error_response("无法从 SSE 流中构建图像 Markdown。", status_code=500)
# Step 2, 3, 4, 5: 处理图像
extracted_path = extract_path_from_markdown(image_markdown)
if not extracted_path:
print("无法从 Markdown 中提取路径。")
return send_error_response("无法从 Markdown 中提取路径。", status_code=500)
print(f"提取的路径: {extracted_path}")
# Step 5: 拼接最终的存储URL
storage_url = f"https://api.chaton.ai/storage/{extracted_path}"
print(f"存储URL: {storage_url}")
# 获取最终下载URL
final_download_url = await fetch_get_url_from_storage(storage_url)
if not final_download_url:
return send_error_response("无法从 storage URL 获取最终下载链接。", status_code=500)
print(f"Final Download URL: {final_download_url}")
# 下载图像
image_bytes = await download_image(final_download_url)
if not image_bytes:
return send_error_response("无法从 URL 下载图像。", status_code=500)
# 转换为 Base64
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
# 将图片保存到images目录并构建可访问的URL
filename = save_base64_image(image_base64)
base_url = app.state.base_url
accessible_url = f"{base_url}/images/{filename}"
# 根据 response_format 返回相应的响应
if response_format.lower() == "b64_json":
response_json = {
"data": [
{
"b64_json": image_base64
}
]
}
return JSONResponse(content=response_json, status_code=200)
else:
# 构建包含可访问URL的响应
response_json = {
"data": [
{
"url": accessible_url
}
]
}
return JSONResponse(content=response_json, status_code=200)
except httpx.RequestError as exc:
print(f"请求失败: {exc}")
return send_error_response(f"请求失败: {str(exc)}", status_code=500)
except Exception as exc:
print(f"内部服务器错误: {exc}")
return send_error_response(f"内部服务器错误: {str(exc)}", status_code=500)
# 运行服务器
def main():
parser = argparse.ArgumentParser(description="启动ChatOn API服务器")
parser.add_argument('--base_url', type=str, default='http://localhost', help='Base URL for accessing images')
parser.add_argument('--port', type=int, default=INITIAL_PORT, help='服务器监听端口')
args = parser.parse_args()
base_url = args.base_url
port = args.port
# 确保 images 目录存在
if not os.path.exists("images"):
os.makedirs("images")
# 设置 FastAPI 应用的 state
app.state.base_url = base_url
print(f"Server started on port {port} with base_url: {base_url}")
# 运行FastAPI应用
uvicorn.run(app, host="0.0.0.0", port=port)
async def get_available_port(start_port: int = INITIAL_PORT, end_port: int = 65535) -> int:
"""查找可用的端口号"""
for port in range(start_port, end_port + 1):
try:
server = await asyncio.start_server(lambda r, w: None, host="0.0.0.0", port=port)
server.close()
await server.wait_closed()
return port
except OSError:
continue
raise RuntimeError(f"No available ports between {start_port} and {end_port}")
if __name__ == "__main__":
main() |