import asyncio import json import sys import uuid import base64 import re import os import argparse import time from datetime import datetime, timezone from typing import List, Optional import httpx import uvicorn from fastapi import ( BackgroundTasks, FastAPI, HTTPException, Request, Response, status, ) from fastapi.responses import HTMLResponse, JSONResponse, StreamingResponse from fastapi.middleware.cors import CORSMiddleware from fastapi.staticfiles import StaticFiles from bearer_token import BearerTokenGenerator from fastapi import Depends, HTTPException, Security from fastapi.security import HTTPAuthorizationCredentials, HTTPBearer # 模型列表 MODELS = ["gpt-4o", "gpt-4o-mini", "claude-3-5-sonnet", "claude"] # 默认端口 INITIAL_PORT = 3000 # 外部API的URL EXTERNAL_API_URL = "https://api.chaton.ai/chats/stream" # 初始化FastAPI应用 app = FastAPI() # 添加CORS中间件 app.add_middleware( CORSMiddleware, allow_origins=["*"], # 允许所有来源 allow_credentials=True, allow_methods=["GET", "POST", "OPTIONS"], # 允许GET, POST, OPTIONS方法 allow_headers=["Content-Type", "Authorization"], # 允许的头部 ) # 挂载静态文件路由以提供 images 目录的内容 app.mount("/images", StaticFiles(directory="images"), name="images") # 辅助函数 def send_error_response(message: str, status_code: int = 400): """构建错误响应,并确保包含CORS头""" error_json = {"error": message} headers = { "Access-Control-Allow-Origin": "*", "Access-Control-Allow-Methods": "GET, POST, OPTIONS", "Access-Control-Allow-Headers": "Content-Type, Authorization", } return JSONResponse(status_code=status_code, content=error_json, headers=headers) def extract_path_from_markdown(markdown: str) -> Optional[str]: """ 提取 Markdown 图片链接中的路径,匹配以 https://spc.unk/ 开头的 URL """ pattern = re.compile(r'!\[.*?\]\(https://spc\.unk/(.*?)\)') match = pattern.search(markdown) if match: return match.group(1) return None async def fetch_get_url_from_storage(storage_url: str) -> Optional[str]: """ 从 storage URL 获取 JSON 并提取 getUrl """ async with httpx.AsyncClient() as client: try: response = await client.get(storage_url) if response.status_code != 200: print(f"获取 storage URL 失败,状态码: {response.status_code}") return None json_response = response.json() return json_response.get("getUrl") except Exception as e: print(f"Error fetching getUrl from storage: {e}") return None async def download_image(image_url: str) -> Optional[bytes]: """ 下载图像 """ async with httpx.AsyncClient() as client: try: response = await client.get(image_url) if response.status_code == 200: return response.content else: print(f"下载图像失败,状态码: {response.status_code}") return None except Exception as e: print(f"Error downloading image: {e}") return None def save_base64_image(base64_str: str, images_dir: str = "images") -> str: """ 将Base64编码的图片保存到images目录,返回文件名 """ if not os.path.exists(images_dir): os.makedirs(images_dir) image_data = base64.b64decode(base64_str) filename = f"{uuid.uuid4()}.png" # 默认保存为png格式 file_path = os.path.join(images_dir, filename) with open(file_path, "wb") as f: f.write(image_data) return filename def is_base64_image(url: str) -> bool: """ 判断URL是否为Base64编码的图片 """ return url.startswith("data:image/") # 添加 HTTPBearer 实例 security = HTTPBearer() # 添加 API_KEY 验证函数 def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)): api_key = os.environ.get("API_KEY") if api_key is None: raise HTTPException(status_code=500, detail="API_KEY not set in environment variables") if credentials.credentials != api_key: raise HTTPException(status_code=401, detail="Invalid API key") return credentials.credentials # 根路径GET请求处理 @app.get("/") async def root(): return JSONResponse(content={ "service": "AI Chat Completion Proxy", "usage": { "endpoint": "/ai/v1/chat/completions", "method": "POST", "headers": { "Content-Type": "application/json", "Authorization": "Bearer YOUR_API_KEY" }, "body": { "model": "One of: " + ", ".join(MODELS), "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello, who are you?"} ], "stream": False, "temperature": 0.7, "max_tokens": 8000 } }, "availableModels": MODELS, "endpoints": { "/ai/v1/chat/completions": "Chat completion endpoint", "/ai/v1/images/generations": "Image generation endpoint", "/ai/v1/models": "List available models" }, "note": "Replace YOUR_API_KEY with your actual API key." }) # 返回模型列表 @app.get("/ai/v1/models") async def list_models(api_key: str = Depends(verify_api_key)): """返回可用模型列表。""" models = [ { "id": model, "object": "model", "created": int(time.time()), "owned_by": "chaton", "permission": [], "root": model, "parent": None, } for model in MODELS ] return JSONResponse(content={ "object": "list", "data": models }) # 聊天完成处理 @app.post("/ai/v1/chat/completions") async def chat_completions(request: Request, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)): """ 处理聊天完成请求 """ try: request_body = await request.json() except json.JSONDecodeError: raise HTTPException(status_code=400, detail="Invalid JSON") # 打印接收到的请求 print("Received Completion JSON:", json.dumps(request_body, ensure_ascii=False)) # 处理消息内容 messages = request_body.get("messages", []) temperature = request_body.get("temperature", 1.0) top_p = request_body.get("top_p", 1.0) max_tokens = request_body.get("max_tokens", 8000) model = request_body.get("model", "gpt-4o") is_stream = request_body.get("stream", False) # 获取 stream 字段 has_image = False has_text = False # 清理和提取消息内容 cleaned_messages = [] for message in messages: content = message.get("content", "") if isinstance(content, list): text_parts = [] images = [] for item in content: if "text" in item: text_parts.append(item.get("text", "")) elif "image_url" in item: has_image = True image_info = item.get("image_url", {}) url = image_info.get("url", "") if is_base64_image(url): # 解码并保存图片 base64_str = url.split(",")[1] filename = save_base64_image(base64_str) base_url = app.state.base_url image_url = f"{base_url}/images/{filename}" images.append({"data": image_url}) else: images.append({"data": url}) extracted_content = " ".join(text_parts).strip() if extracted_content: has_text = True message["content"] = extracted_content if images: message["images"] = images cleaned_messages.append(message) print("Extracted:", extracted_content) else: if images: has_image = True message["content"] = "" message["images"] = images cleaned_messages.append(message) print("Extracted image only.") else: print("Deleted message with empty content.") elif isinstance(content, str): content_str = content.strip() if content_str: has_text = True message["content"] = content_str cleaned_messages.append(message) print("Retained content:", content_str) else: print("Deleted message with empty content.") else: print("Deleted non-expected type of content message.") if not cleaned_messages: raise HTTPException(status_code=400, detail="所有消息的内容均为空。") # 验证模型 if model not in MODELS: model = "gpt-4o" # 构建新的请求JSON new_request_json = { "function_image_gen": False, "function_web_search": True, "max_tokens": max_tokens, "model": model, "source": "chat/free", "temperature": temperature, "top_p": top_p, "messages": cleaned_messages, } modified_request_body = json.dumps(new_request_json, ensure_ascii=False) print("Modified Request JSON:", modified_request_body) # 获取Bearer Token tmp_token = BearerTokenGenerator.get_bearer(modified_request_body) if not tmp_token: raise HTTPException(status_code=500, detail="无法生成 Bearer Token") bearer_token, formatted_date = tmp_token headers = { "Date": formatted_date, "Client-time-zone": "-05:00", "Authorization": bearer_token, "User-Agent": "ChatOn_Android/1.53.502", "Accept-Language": "en-US", "X-Cl-Options": "hb", "Content-Type": "application/json; charset=UTF-8", } if is_stream: # 流式响应处理 async def event_generator(): async with httpx.AsyncClient(timeout=None) as client_stream: try: async with client_stream.stream("POST", EXTERNAL_API_URL, headers=headers, content=modified_request_body) as streamed_response: async for line in streamed_response.aiter_lines(): if line.startswith("data: "): data = line[6:].strip() if data == "[DONE]": # 通知客户端流结束 yield "data: [DONE]\n\n" break try: sse_json = json.loads(data) if "choices" in sse_json: for choice in sse_json["choices"]: delta = choice.get("delta", {}) content = delta.get("content") if content: new_sse_json = { "choices": [ { "index": choice.get("index", 0), "delta": {"content": content}, } ], "created": sse_json.get( "created", int(datetime.now(timezone.utc).timestamp()) ), "id": sse_json.get( "id", str(uuid.uuid4()) ), "model": sse_json.get("model", "gpt-4o"), "system_fingerprint": f"fp_{uuid.uuid4().hex[:12]}", } new_sse_line = f"data: {json.dumps(new_sse_json, ensure_ascii=False)}\n\n" yield new_sse_line except json.JSONDecodeError: print("JSON解析错误") continue except httpx.RequestError as exc: print(f"外部API请求失败: {exc}") yield f"data: {{\"error\": \"外部API请求失败: {str(exc)}\"}}\n\n" return StreamingResponse( event_generator(), media_type="text/event-stream", headers={ "Cache-Control": "no-cache", "Connection": "keep-alive", # CORS头已通过中间件处理,无需在这里重复添加 }, ) else: # 非流式响应处理 async with httpx.AsyncClient(timeout=None) as client: try: response = await client.post( EXTERNAL_API_URL, headers=headers, content=modified_request_body, timeout=None ) if response.status_code != 200: raise HTTPException( status_code=response.status_code, detail=f"API 错误: {response.status_code}", ) sse_lines = response.text.splitlines() content_builder = "" images_urls = [] for line in sse_lines: if line.startswith("data: "): data = line[6:].strip() if data == "[DONE]": break try: sse_json = json.loads(data) if "choices" in sse_json: for choice in sse_json["choices"]: if "delta" in choice: delta = choice["delta"] if "content" in delta: content_builder += delta["content"] except json.JSONDecodeError: print("JSON解析错误") continue openai_response = { "id": f"chatcmpl-{uuid.uuid4()}", "object": "chat.completion", "created": int(datetime.now(timezone.utc).timestamp()), "model": model, "choices": [ { "index": 0, "message": { "role": "assistant", "content": content_builder, }, "finish_reason": "stop", } ], } # 处理图片(如果有) if has_image: images = [] for message in cleaned_messages: if "images" in message: for img in message["images"]: images.append({"data": img["data"]}) openai_response["choices"][0]["message"]["images"] = images return JSONResponse(content=openai_response, status_code=200) except httpx.RequestError as exc: raise HTTPException(status_code=500, detail=f"请求失败: {str(exc)}") except Exception as exc: raise HTTPException(status_code=500, detail=f"内部服务器错误: {str(exc)}") # 图像生成处理 @app.post("/ai/v1/images/generations") async def images_generations(request: Request, api_key: str = Depends(verify_api_key)): """ 处理图像生成请求 """ try: request_body = await request.json() except json.JSONDecodeError: return send_error_response("Invalid JSON", status_code=400) print("Received Image Generations JSON:", json.dumps(request_body, ensure_ascii=False)) # 验证必需的字段 if "prompt" not in request_body: return send_error_response("缺少必需的字段: prompt", status_code=400) user_prompt = request_body.get("prompt", "").strip() response_format = request_body.get("response_format", "b64_json").strip() if not user_prompt: return send_error_response("Prompt 不能为空。", status_code=400) print(f"Prompt: {user_prompt}") # 构建新的 TextToImage JSON 请求体 text_to_image_json = { "function_image_gen": True, "function_web_search": True, "image_aspect_ratio": "1:1", "image_style": "photographic", # 暂时固定 image_style "max_tokens": 8000, "messages": [ { "content": "You are a helpful artist, please based on imagination draw a picture.", "role": "system" }, { "content": "Draw: " + user_prompt, "role": "user" } ], "model": "gpt-4o", # 固定 model,只能gpt-4o或gpt-4o-mini "source": "chat/pro_image" # 固定 source } modified_request_body = json.dumps(text_to_image_json, ensure_ascii=False) print("Modified Request JSON:", modified_request_body) # 获取Bearer Token tmp_token = BearerTokenGenerator.get_bearer(modified_request_body, path="/chats/stream") if not tmp_token: return send_error_response("无法生成 Bearer Token", status_code=500) bearer_token, formatted_date = tmp_token headers = { "Date": formatted_date, "Client-time-zone": "-05:00", "Authorization": bearer_token, "User-Agent": "ChatOn_Android/1.53.502", "Accept-Language": "en-US", "X-Cl-Options": "hb", "Content-Type": "application/json; charset=UTF-8", } async with httpx.AsyncClient(timeout=None) as client: try: response = await client.post( EXTERNAL_API_URL, headers=headers, content=modified_request_body, timeout=None ) if response.status_code != 200: return send_error_response(f"API 错误: {response.status_code}", status_code=500) # 初始化用于拼接 URL 的字符串 url_builder = "" # 读取 SSE 流并拼接 URL async for line in response.aiter_lines(): if line.startswith("data: "): data = line[6:].strip() if data == "[DONE]": break try: sse_json = json.loads(data) if "choices" in sse_json: for choice in sse_json["choices"]: delta = choice.get("delta", {}) content = delta.get("content") if content: url_builder += content except json.JSONDecodeError: print("JSON解析错误") continue image_markdown = url_builder # Step 1: 检查Markdown文本是否为空 if not image_markdown: print("无法从 SSE 流中构建图像 Markdown。") return send_error_response("无法从 SSE 流中构建图像 Markdown。", status_code=500) # Step 2, 3, 4, 5: 处理图像 extracted_path = extract_path_from_markdown(image_markdown) if not extracted_path: print("无法从 Markdown 中提取路径。") return send_error_response("无法从 Markdown 中提取路径。", status_code=500) print(f"提取的路径: {extracted_path}") # Step 5: 拼接最终的存储URL storage_url = f"https://api.chaton.ai/storage/{extracted_path}" print(f"存储URL: {storage_url}") # 获取最终下载URL final_download_url = await fetch_get_url_from_storage(storage_url) if not final_download_url: return send_error_response("无法从 storage URL 获取最终下载链接。", status_code=500) print(f"Final Download URL: {final_download_url}") # 下载图像 image_bytes = await download_image(final_download_url) if not image_bytes: return send_error_response("无法从 URL 下载图像。", status_code=500) # 转换为 Base64 image_base64 = base64.b64encode(image_bytes).decode('utf-8') # 将图片保存到images目录并构建可访问的URL filename = save_base64_image(image_base64) base_url = app.state.base_url accessible_url = f"{base_url}/images/{filename}" # 根据 response_format 返回相应的响应 if response_format.lower() == "b64_json": response_json = { "data": [ { "b64_json": image_base64 } ] } return JSONResponse(content=response_json, status_code=200) else: # 构建包含可访问URL的响应 response_json = { "data": [ { "url": accessible_url } ] } return JSONResponse(content=response_json, status_code=200) except httpx.RequestError as exc: print(f"请求失败: {exc}") return send_error_response(f"请求失败: {str(exc)}", status_code=500) except Exception as exc: print(f"内部服务器错误: {exc}") return send_error_response(f"内部服务器错误: {str(exc)}", status_code=500) # 运行服务器 def main(): parser = argparse.ArgumentParser(description="启动ChatOn API服务器") parser.add_argument('--base_url', type=str, default='http://localhost', help='Base URL for accessing images') parser.add_argument('--port', type=int, default=INITIAL_PORT, help='服务器监听端口') args = parser.parse_args() base_url = args.base_url port = args.port # 检查 API_KEY 是否设置 if not os.environ.get("API_KEY"): print("警告: API_KEY 环境变量未设置。客户端验证将无法正常工作。") # 确保 images 目录存在 if not os.path.exists("images"): os.makedirs("images") # 设置 FastAPI 应用的 state app.state.base_url = base_url print(f"Server started on port {port} with base_url: {base_url}") # 运行FastAPI应用 uvicorn.run(app, host="0.0.0.0", port=port) async def get_available_port(start_port: int = INITIAL_PORT, end_port: int = 65535) -> int: """查找可用的端口号""" for port in range(start_port, end_port + 1): try: server = await asyncio.start_server(lambda r, w: None, host="0.0.0.0", port=port) server.close() await server.wait_closed() return port except OSError: continue raise RuntimeError(f"No available ports between {start_port} and {end_port}") if __name__ == "__main__": main()