Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
from llama_index.core import VectorStoreIndex, Settings
|
4 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
5 |
from llama_index.legacy.callbacks import CallbackManager
|
6 |
from llama_index.llms.openai_like import OpenAILike
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
|
9 |
st.title("llama_index_demo")
|
10 |
|
11 |
-
#
|
12 |
@st.cache_resource
|
13 |
def init_models():
|
14 |
embed_model = HuggingFaceEmbedding(
|
@@ -16,12 +27,7 @@ def init_models():
|
|
16 |
)
|
17 |
Settings.embed_model = embed_model
|
18 |
|
19 |
-
llm
|
20 |
-
model_name="internlm/internlm2-chat-1_8b",
|
21 |
-
tokenizer_name="internlm/internlm2-chat-1_8b",
|
22 |
-
model_kwargs={"trust_remote_code": True},
|
23 |
-
tokenizer_kwargs={"trust_remote_code": True}
|
24 |
-
)
|
25 |
Settings.llm = llm
|
26 |
|
27 |
documents = SimpleDirectoryReader("./").load_data()
|
@@ -30,23 +36,20 @@ def init_models():
|
|
30 |
|
31 |
return query_engine
|
32 |
|
33 |
-
|
34 |
-
# Check if models need initialization
|
35 |
if 'query_engine' not in st.session_state:
|
36 |
st.session_state['query_engine'] = init_models()
|
37 |
-
|
38 |
def greet2(question):
|
39 |
-
if st.session_state['query_engine'] is None:
|
40 |
-
return "The models failed to initialize, please check your environment"
|
41 |
response = st.session_state['query_engine'].query(question)
|
42 |
return response
|
43 |
|
44 |
-
|
45 |
# Store LLM generated responses
|
46 |
if "messages" not in st.session_state.keys():
|
47 |
-
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
|
48 |
|
49 |
-
# Display or clear chat messages
|
50 |
for message in st.session_state.messages:
|
51 |
with st.chat_message(message["role"]):
|
52 |
st.write(message["content"])
|
|
|
1 |
import streamlit as st
|
2 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
|
|
3 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
4 |
from llama_index.legacy.callbacks import CallbackManager
|
5 |
from llama_index.llms.openai_like import OpenAILike
|
6 |
|
7 |
+
# Create an instance of CallbackManager
|
8 |
+
callback_manager = CallbackManager()
|
9 |
+
|
10 |
+
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
|
11 |
+
model = "internlm2.5-latest"
|
12 |
+
api_key = os.environ['API_KEY']
|
13 |
+
|
14 |
+
|
15 |
+
llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
|
20 |
st.title("llama_index_demo")
|
21 |
|
22 |
+
# 初始化模型
|
23 |
@st.cache_resource
|
24 |
def init_models():
|
25 |
embed_model = HuggingFaceEmbedding(
|
|
|
27 |
)
|
28 |
Settings.embed_model = embed_model
|
29 |
|
30 |
+
#用初始化llm
|
|
|
|
|
|
|
|
|
|
|
31 |
Settings.llm = llm
|
32 |
|
33 |
documents = SimpleDirectoryReader("./").load_data()
|
|
|
36 |
|
37 |
return query_engine
|
38 |
|
39 |
+
# 检查是否需要初始化模型
|
|
|
40 |
if 'query_engine' not in st.session_state:
|
41 |
st.session_state['query_engine'] = init_models()
|
42 |
+
|
43 |
def greet2(question):
|
|
|
|
|
44 |
response = st.session_state['query_engine'].query(question)
|
45 |
return response
|
46 |
|
47 |
+
|
48 |
# Store LLM generated responses
|
49 |
if "messages" not in st.session_state.keys():
|
50 |
+
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
|
51 |
|
52 |
+
# Display or clear chat messages
|
53 |
for message in st.session_state.messages:
|
54 |
with st.chat_message(message["role"]):
|
55 |
st.write(message["content"])
|