Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,20 @@
|
|
1 |
import streamlit as st
|
2 |
-
from llama_index.core import VectorStoreIndex,
|
3 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
4 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
|
|
5 |
|
6 |
st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
|
7 |
st.title("llama_index_demo")
|
8 |
|
9 |
-
# Initialize models
|
10 |
@st.cache_resource
|
11 |
def init_models():
|
12 |
-
# Embeddings model
|
13 |
embed_model = HuggingFaceEmbedding(
|
14 |
-
model_name="sentence-transformers/all-mpnet-base-v2"
|
15 |
)
|
16 |
Settings.embed_model = embed_model
|
17 |
|
18 |
-
# Language Model
|
19 |
llm = HuggingFaceLLM(
|
20 |
model_name="internlm/internlm2-chat-1_8b",
|
21 |
tokenizer_name="internlm/internlm2-chat-1_8b",
|
@@ -24,8 +23,7 @@ def init_models():
|
|
24 |
)
|
25 |
Settings.llm = llm
|
26 |
|
27 |
-
#
|
28 |
-
documents = SimpleDirectoryReader("data.md").load_data() # Assuming data is in a "data" folder in your app directory
|
29 |
index = VectorStoreIndex.from_documents(documents)
|
30 |
query_engine = index.as_query_engine()
|
31 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from llama_index.core import VectorStoreIndex, Settings
|
3 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
4 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
5 |
+
from llama_index.core.readers import SimpleReader
|
6 |
|
7 |
st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
|
8 |
st.title("llama_index_demo")
|
9 |
|
10 |
+
# Initialize models
|
11 |
@st.cache_resource
|
12 |
def init_models():
|
|
|
13 |
embed_model = HuggingFaceEmbedding(
|
14 |
+
model_name="sentence-transformers/all-mpnet-base-v2"
|
15 |
)
|
16 |
Settings.embed_model = embed_model
|
17 |
|
|
|
18 |
llm = HuggingFaceLLM(
|
19 |
model_name="internlm/internlm2-chat-1_8b",
|
20 |
tokenizer_name="internlm/internlm2-chat-1_8b",
|
|
|
23 |
)
|
24 |
Settings.llm = llm
|
25 |
|
26 |
+
documents = SimpleReader().load_data(file_path="./data.md") #load data.md file
|
|
|
27 |
index = VectorStoreIndex.from_documents(documents)
|
28 |
query_engine = index.as_query_engine()
|
29 |
|