from .network import U2NET import os from PIL import Image import numpy as np import torch import torch.nn.functional as F import torchvision.transforms as transforms from collections import OrderedDict def load_checkpoint(model, checkpoint_path): if not os.path.exists(checkpoint_path): print("----No checkpoints at given path----") return model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) new_state_dict = OrderedDict() for k, v in model_state_dict.items(): name = k[7:] # remove `module.` new_state_dict[name] = v model.load_state_dict(new_state_dict) print("----checkpoints loaded from path: {}----".format(checkpoint_path)) return model class Normalize_image(object): """Normalize given tensor into given mean and standard dev Args: mean (float): Desired mean to substract from tensors std (float): Desired std to divide from tensors """ def __init__(self, mean, std): assert isinstance(mean, (float)) if isinstance(mean, float): self.mean = mean if isinstance(std, float): self.std = std self.normalize_1 = transforms.Normalize(self.mean, self.std) self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3) self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18) def __call__(self, image_tensor): if image_tensor.shape[0] == 1: return self.normalize_1(image_tensor) elif image_tensor.shape[0] == 3: return self.normalize_3(image_tensor) elif image_tensor.shape[0] == 18: return self.normalize_18(image_tensor) else: assert "Please set proper channels! Normlization implemented only for 1, 3 and 18" def apply_transform(img): transforms_list = [] transforms_list += [transforms.ToTensor()] transforms_list += [Normalize_image(0.5, 0.5)] transform_rgb = transforms.Compose(transforms_list) return transform_rgb(img) def generate_mask(input_image, net, device='cpu'): img = input_image img_size = img.size img = img.resize((768, 768), Image.BICUBIC) image_tensor = apply_transform(img) image_tensor = torch.unsqueeze(image_tensor, 0) with torch.no_grad(): output_tensor = net(image_tensor.to(device)) output_tensor = F.log_softmax(output_tensor[0], dim=1) output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1] output_tensor = torch.squeeze(output_tensor, dim=0) output_arr = output_tensor.cpu().numpy() mask = (output_arr != 0).astype(np.uint8) * 255 mask = mask[0] # Selecting the first channel to make it 2D alpha_mask_img = Image.fromarray(mask, mode='L') alpha_mask_img = alpha_mask_img.resize(img_size, Image.BICUBIC) return alpha_mask_img def load_seg_model(checkpoint_path, device='cpu'): net = U2NET(in_ch=3, out_ch=4) net = load_checkpoint(net, checkpoint_path) net = net.to(device) net = net.eval() return net