Spaces:
Running
Running
from PIL import Image, ImageDraw | |
import torch.nn.functional as F | |
import torch | |
from models.letr import build | |
from models.misc import nested_tensor_from_tensor_list | |
from models.preprocessing import Compose, ToTensor, Resize, Normalize | |
def create_letr(path): | |
# obtain checkpoints | |
checkpoint = torch.load(path, map_location='cpu') | |
# load model | |
args = checkpoint['args'] | |
args.device = 'cpu' | |
model, _, _ = build(args) | |
model.load_state_dict(checkpoint['model']) | |
model.eval() | |
return model | |
def draw_fig(image, outputs, orig_size): | |
# find lines | |
out_logits, out_line = outputs['pred_logits'], outputs['pred_lines'] | |
prob = F.softmax(out_logits, -1) | |
scores, labels = prob[..., :-1].max(-1) | |
img_h, img_w = orig_size.unbind(0) | |
scale_fct = torch.unsqueeze(torch.stack( | |
[img_w, img_h, img_w, img_h], dim=0), dim=0) | |
lines = out_line * scale_fct[:, None, :] | |
lines = lines.view(1000, 2, 2) | |
lines = lines.flip([-1]) # this is yxyx format | |
scores = scores.detach().numpy() | |
keep = scores >= 0.7 | |
keep = keep.squeeze() | |
lines = lines[keep] | |
if len(lines) != 0: | |
lines = lines.reshape(lines.shape[0], -1) | |
# draw lines | |
draw = ImageDraw.Draw(image) | |
for tp_id, line in enumerate(lines): | |
y1, x1, y2, x2 = line | |
draw.line((x1, y1, x2, y2), fill=500) | |
if __name__ == '__main__': | |
model = create_letr('resnet50/checkpoint0024.pth') | |
test_size = 256 | |
normalize = Compose([ | |
ToTensor(), | |
Normalize([0.538, 0.494, 0.453], [0.257, 0.263, 0.273]), | |
Resize([test_size]), | |
]) | |
image = Image.open('demo.png') | |
h, w = image.height, image.width | |
orig_size = torch.as_tensor([int(h), int(w)]) | |
img = normalize(image) | |
inputs = nested_tensor_from_tensor_list([img]) | |
with torch.no_grad(): | |
outputs = model(inputs)[0] | |
draw_fig(image, outputs, orig_size) | |
image.save('output.png') |