File size: 6,626 Bytes
9cfda96
 
 
 
 
 
bd930f4
9cfda96
 
 
 
 
 
bd930f4
fe298bb
 
9cfda96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe298bb
9cfda96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd930f4
 
 
 
 
 
 
9cfda96
 
 
 
 
 
 
 
 
 
 
 
bd930f4
9cfda96
fe298bb
 
9cfda96
680e883
9cfda96
 
 
b274260
 
680e883
 
 
c528095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import streamlit as st
import streamlit.components.v1 as components
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
from torchvision.transforms import ToTensor, Resize

import numpy as np
from PIL import Image
import math
from obj2html import obj2html

import os

# DEPTH IMAGE TO OBJ
minDepth=10
maxDepth=1000
def my_DepthNorm(x, maxDepth):
    return maxDepth / x

def vete(v, vt):
    if v == vt:
        return str(v)
    return str(v)+"/"+str(vt)

def create_obj(img, objPath='model.obj', mtlPath='model.mtl', matName='colored', useMaterial=False):
    w = img.shape[1]
    h = img.shape[0]

    FOV = math.pi/4
    D = (img.shape[0]/2)/math.tan(FOV/2)

    if max(objPath.find('\\'), objPath.find('/')) > -1:
        os.makedirs(os.path.dirname(mtlPath), exist_ok=True)

    with open(objPath, "w") as f:
        if useMaterial:
            f.write("mtllib " + mtlPath + "\n")
            f.write("usemtl " + matName + "\n")

        ids = np.zeros((img.shape[1], img.shape[0]), int)
        vid = 1

        all_x = []
        all_y = []
        all_z = []

        for u in range(0, w):
            for v in range(h-1, -1, -1):

                d = img[v, u]

                ids[u, v] = vid
                if d == 0.0:
                    ids[u, v] = 0
                vid += 1

                x = u - w/2
                y = v - h/2
                z = -D

                norm = 1 / math.sqrt(x*x + y*y + z*z)

                t = d/(z*norm)

                x = -t*x*norm
                y = t*y*norm
                z = -t*z*norm

                f.write("v " + str(x) + " " + str(y) + " " + str(z) + "\n")

        for u in range(0, img.shape[1]):
            for v in range(0, img.shape[0]):
                f.write("vt " + str(u/img.shape[1]) +
                        " " + str(v/img.shape[0]) + "\n")

        for u in range(0, img.shape[1]-1):
            for v in range(0, img.shape[0]-1):

                v1 = ids[u, v]
                v3 = ids[u+1, v]
                v2 = ids[u, v+1]
                v4 = ids[u+1, v+1]

                if v1 == 0 or v2 == 0 or v3 == 0 or v4 == 0:
                    continue

                f.write("f " + vete(v1, v1) + " " +
                        vete(v2, v2) + " " + vete(v3, v3) + "\n")
                f.write("f " + vete(v3, v3) + " " +
                        vete(v2, v2) + " " + vete(v4, v4) + "\n")
# MODEL
class UpSample(nn.Sequential):
    def __init__(self, skip_input, output_features):
        super(UpSample, self).__init__()        
        self.convA = nn.Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1)
        self.leakyreluA = nn.LeakyReLU(0.2)
        self.convB = nn.Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1)
        self.leakyreluB = nn.LeakyReLU(0.2)

    def forward(self, x, concat_with):
        up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)], mode='bilinear', align_corners=True)
        return self.leakyreluB( self.convB( self.convA( torch.cat([up_x, concat_with], dim=1)  ) )  )

class Decoder(nn.Module):
    def __init__(self, num_features=1664, decoder_width = 1.0):
        super(Decoder, self).__init__()
        features = int(num_features * decoder_width)

        self.conv2 = nn.Conv2d(num_features, features, kernel_size=1, stride=1, padding=0)

        self.up1 = UpSample(skip_input=features//1 + 256, output_features=features//2)
        self.up2 = UpSample(skip_input=features//2 + 128,  output_features=features//4)
        self.up3 = UpSample(skip_input=features//4 + 64,  output_features=features//8)
        self.up4 = UpSample(skip_input=features//8 + 64,  output_features=features//16)

        self.conv3 = nn.Conv2d(features//16, 1, kernel_size=3, stride=1, padding=1)

    def forward(self, features):
        x_block0, x_block1, x_block2, x_block3, x_block4 = features[3], features[4], features[6], features[8], features[12]
        x_d0 = self.conv2(F.relu(x_block4))

        x_d1 = self.up1(x_d0, x_block3)
        x_d2 = self.up2(x_d1, x_block2)
        x_d3 = self.up3(x_d2, x_block1)
        x_d4 = self.up4(x_d3, x_block0)
        return self.conv3(x_d4)

class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()       
        self.original_model = models.densenet169( pretrained=False )

    def forward(self, x):
        features = [x]
        for k, v in self.original_model.features._modules.items(): features.append( v(features[-1]) )
        return features

class PTModel(nn.Module):
    def __init__(self):
        super(PTModel, self).__init__()
        self.encoder = Encoder()
        self.decoder = Decoder()

    def forward(self, x):
        return self.decoder( self.encoder(x) )

model = PTModel().float()
path = "https://github.com/nicolalandro/DenseDepth/releases/download/0.1/nyu.pth"
model.load_state_dict(torch.hub.load_state_dict_from_url(path, progress=True))
model.eval()

def predict(inp):
    width, height = inp.size
    if width > height:
        scale_fn = Resize((640, int((640*width)/height)))
    else:
        scale_fn = Resize((int((640*height)/width), 640))
    res_img = scale_fn(inp)
    torch_image = ToTensor()(res_img)
    images = torch_image.unsqueeze(0)

    with torch.no_grad():
       predictions = model(images)
    output = np.clip(my_DepthNorm(predictions.numpy(), maxDepth=maxDepth), minDepth, maxDepth) / maxDepth
    depth = output[0,0,:,:]

    img = Image.fromarray(np.uint8(depth*255))

    create_obj(depth, 'model.obj')
    html_string = obj2html('model.obj', html_elements_only=True)

    return res_img, img, html_string


# STREAMLIT

uploader = st.file_uploader('Wait the demo file to be rendered and upload your favourite image here.',type=['jpg','jpeg','png'])

if uploader is not None:
    pil_image = Image.open(uploader)
else:
    pil_image = Image.open('119_image.png')
    
with st.spinner("Waiting for the predictions..."):
    pil_scaled, pil_depth, html_string = predict(pil_image)
    components.html(html_string)
    #st.markdown(html_string, unsafe_allow_html=True)
    
    col1, col2, col3 = st.columns(3)
    with col1:
        st.image(pil_scaled)
    with col2:
        st.image(pil_depth)
    with col3:
        with open('model.obj') as f:
            st.download_button('Download model.obj', f, file_name="model.obj")
        os.remove('model.obj')
        pil_depth.save('tmp.png')
        with open('tmp.png', "rb") as f:
            st.download_button('Download depth.png', f,file_name="depth.png", mime="image/png")
        os.remove('tmp.png')