|
import torch |
|
from inference.svs.base_svs_infer import BaseSVSInfer |
|
from utils import load_ckpt |
|
from utils.hparams import hparams |
|
from modulesmodules.diff.shallow_diffusion_tts import GaussianDiffusion |
|
from tasks.svs.diffsinger_task import DIFF_DECODERS |
|
|
|
class DiffSingerCascadeInfer(BaseSVSInfer): |
|
def build_model(self): |
|
model = GaussianDiffusion( |
|
phone_encoder=self.ph_encoder, |
|
out_dims=hparams['audio_num_mel_bins'], denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), |
|
timesteps=hparams['timesteps'], |
|
K_step=hparams['K_step'], |
|
loss_type=hparams['diff_loss_type'], |
|
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], |
|
) |
|
model.eval() |
|
load_ckpt(model, hparams['work_dir'], 'model') |
|
return model |
|
|
|
def forward_model(self, inp): |
|
sample = self.input_to_batch(inp) |
|
txt_tokens = sample['txt_tokens'] |
|
spk_id = sample.get('spk_ids') |
|
with torch.no_grad(): |
|
output = self.model(txt_tokens, spk_id=spk_id, ref_mels=None, infer=True, |
|
pitch_midi=sample['pitch_midi'], midi_dur=sample['midi_dur'], |
|
is_slur=sample['is_slur']) |
|
mel_out = output['mel_out'] |
|
f0_pred = output['f0_denorm'] |
|
wav_out = self.run_vocoder(mel_out, f0=f0_pred) |
|
wav_out = wav_out.cpu().numpy() |
|
return wav_out[0] |
|
|
|
|
|
if __name__ == '__main__': |
|
inp = { |
|
'text': '小酒窝长睫毛AP是你最美的记号', |
|
'notes': 'C#4/Db4 | F#4/Gb4 | G#4/Ab4 | A#4/Bb4 F#4/Gb4 | F#4/Gb4 C#4/Db4 | C#4/Db4 | rest | C#4/Db4 | A#4/Bb4 | G#4/Ab4 | A#4/Bb4 | G#4/Ab4 | F4 | C#4/Db4', |
|
'notes_duration': '0.407140 | 0.376190 | 0.242180 | 0.509550 0.183420 | 0.315400 0.235020 | 0.361660 | 0.223070 | 0.377270 | 0.340550 | 0.299620 | 0.344510 | 0.283770 | 0.323390 | 0.360340', |
|
'input_type': 'word' |
|
} |
|
c = { |
|
'text': '小酒窝长睫毛AP是你最美的记号', |
|
'ph_seq': 'x iao j iu w o ch ang ang j ie ie m ao AP sh i n i z ui m ei d e j i h ao', |
|
'note_seq': 'C#4/Db4 C#4/Db4 F#4/Gb4 F#4/Gb4 G#4/Ab4 G#4/Ab4 A#4/Bb4 A#4/Bb4 F#4/Gb4 F#4/Gb4 F#4/Gb4 C#4/Db4 C#4/Db4 C#4/Db4 rest C#4/Db4 C#4/Db4 A#4/Bb4 A#4/Bb4 G#4/Ab4 G#4/Ab4 A#4/Bb4 A#4/Bb4 G#4/Ab4 G#4/Ab4 F4 F4 C#4/Db4 C#4/Db4', |
|
'note_dur_seq': '0.407140 0.407140 0.376190 0.376190 0.242180 0.242180 0.509550 0.509550 0.183420 0.315400 0.315400 0.235020 0.361660 0.361660 0.223070 0.377270 0.377270 0.340550 0.340550 0.299620 0.299620 0.344510 0.344510 0.283770 0.283770 0.323390 0.323390 0.360340 0.360340', |
|
'is_slur_seq': '0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0', |
|
'input_type': 'phoneme' |
|
} |
|
DiffSingerCascadeInfer.example_run(inp) |
|
|
|
|