|
import torch |
|
import os |
|
import importlib |
|
from inference.tts.base_tts_infer import BaseTTSInfer |
|
from utils.ckpt_utils import load_ckpt, get_last_checkpoint |
|
from modules.GenerSpeech.model.generspeech import GenerSpeech |
|
from data_gen.tts.emotion import inference as EmotionEncoder |
|
from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance |
|
from data_gen.tts.emotion.inference import preprocess_wav |
|
from data_gen.tts.data_gen_utils import is_sil_phoneme |
|
from resemblyzer import VoiceEncoder |
|
from utils import audio |
|
class GenerSpeechInfer(BaseTTSInfer): |
|
def build_model(self): |
|
model = GenerSpeech(self.ph_encoder) |
|
model.eval() |
|
load_ckpt(model, self.hparams['work_dir'], 'model') |
|
return model |
|
|
|
def preprocess_input(self, inp): |
|
""" |
|
:param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)} |
|
:return: |
|
""" |
|
|
|
preprocessor, preprocess_args = self.preprocessor, self.preprocess_args |
|
text_raw = inp['text'] |
|
item_name = inp.get('item_name', '<ITEM_NAME>') |
|
ph, txt, word, ph2word, ph_gb_word = preprocessor.txt_to_ph(preprocessor.txt_processor, text_raw, preprocess_args) |
|
ph_token = self.ph_encoder.encode(ph) |
|
|
|
|
|
ref_audio = inp['ref_audio'] |
|
processed_ref_audio = 'example/temp.wav' |
|
voice_encoder = VoiceEncoder().cuda() |
|
encoder = [self.ph_encoder, self.word_encoder] |
|
EmotionEncoder.load_model(self.hparams['emotion_encoder_path']) |
|
binarizer_cls = self.hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer') |
|
pkg = ".".join(binarizer_cls.split(".")[:-1]) |
|
cls_name = binarizer_cls.split(".")[-1] |
|
binarizer_cls = getattr(importlib.import_module(pkg), cls_name) |
|
|
|
ref_audio_raw, ref_text_raw = self.asr(ref_audio) |
|
ph_ref, txt_ref, word_ref, ph2word_ref, ph_gb_word_ref = preprocessor.txt_to_ph(preprocessor.txt_processor, ref_text_raw, preprocess_args) |
|
ph_gb_word_nosil = ["_".join([p for p in w.split("_") if not is_sil_phoneme(p)]) for w in ph_gb_word_ref.split(" ") if not is_sil_phoneme(w)] |
|
phs_for_align = ['SIL'] + ph_gb_word_nosil + ['SIL'] |
|
phs_for_align = " ".join(phs_for_align) |
|
|
|
|
|
os.system('rm -r example/; mkdir example/') |
|
audio.save_wav(ref_audio_raw, processed_ref_audio, self.hparams['audio_sample_rate']) |
|
with open(f'example/temp.lab', 'w') as f_txt: |
|
f_txt.write(phs_for_align) |
|
os.system(f'mfa align example/ {self.hparams["binary_data_dir"]}/mfa_dict.txt {self.hparams["binary_data_dir"]}/mfa_model.zip example/textgrid/ --clean') |
|
item2tgfn = 'example/textgrid/temp.TextGrid' |
|
|
|
item = binarizer_cls.process_item(item_name, ph_ref, txt_ref, item2tgfn, processed_ref_audio, 0, 0, encoder, self.hparams['binarization_args']) |
|
item['emo_embed'] = Embed_utterance(preprocess_wav(item['wav_fn'])) |
|
item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) |
|
|
|
item.update({ |
|
'ref_ph': item['ph'], |
|
'ph': ph, |
|
'ph_token': ph_token, |
|
'text': txt |
|
}) |
|
return item |
|
|
|
def input_to_batch(self, item): |
|
item_names = [item['item_name']] |
|
text = [item['text']] |
|
ph = [item['ph']] |
|
|
|
txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device) |
|
txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) |
|
mels = torch.FloatTensor(item['mel'])[None, :].to(self.device) |
|
f0 = torch.FloatTensor(item['f0'])[None, :].to(self.device) |
|
|
|
mel2ph = torch.LongTensor(item['mel2ph'])[None, :].to(self.device) |
|
spk_embed = torch.FloatTensor(item['spk_embed'])[None, :].to(self.device) |
|
emo_embed = torch.FloatTensor(item['emo_embed'])[None, :].to(self.device) |
|
|
|
ph2word = torch.LongTensor(item['ph2word'])[None, :].to(self.device) |
|
mel2word = torch.LongTensor(item['mel2word'])[None, :].to(self.device) |
|
word_tokens = torch.LongTensor(item['word_tokens'])[None, :].to(self.device) |
|
|
|
batch = { |
|
'item_name': item_names, |
|
'text': text, |
|
'ph': ph, |
|
'mels': mels, |
|
'f0': f0, |
|
'txt_tokens': txt_tokens, |
|
'txt_lengths': txt_lengths, |
|
'spk_embed': spk_embed, |
|
'emo_embed': emo_embed, |
|
'mel2ph': mel2ph, |
|
'ph2word': ph2word, |
|
'mel2word': mel2word, |
|
'word_tokens': word_tokens, |
|
} |
|
return batch |
|
|
|
def forward_model(self, inp): |
|
sample = self.input_to_batch(inp) |
|
txt_tokens = sample['txt_tokens'] |
|
with torch.no_grad(): |
|
output = self.model(txt_tokens, ref_mel2ph=sample['mel2ph'], ref_mel2word=sample['mel2word'], ref_mels=sample['mels'], |
|
spk_embed=sample['spk_embed'], emo_embed=sample['emo_embed'], global_steps=300000, infer=True) |
|
mel_out = output['mel_out'] |
|
wav_out = self.run_vocoder(mel_out) |
|
wav_out = wav_out.squeeze().cpu().numpy() |
|
return wav_out |
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
inp = { |
|
'text': 'here we go', |
|
'ref_audio': 'assets/0011_001570.wav' |
|
} |
|
GenerSpeechInfer.example_run(inp) |
|
|