|
|
|
|
|
|
|
|
|
|
|
"""Parallel WaveGAN Modules.""" |
|
|
|
import logging |
|
import math |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from modules.parallel_wavegan.layers import Conv1d |
|
from modules.parallel_wavegan.layers import Conv1d1x1 |
|
from modules.parallel_wavegan.layers import ResidualBlock |
|
from modules.parallel_wavegan.layers import upsample |
|
from modules.parallel_wavegan import models |
|
|
|
|
|
class ParallelWaveGANGenerator(torch.nn.Module): |
|
"""Parallel WaveGAN Generator module.""" |
|
|
|
def __init__(self, |
|
in_channels=1, |
|
out_channels=1, |
|
kernel_size=3, |
|
layers=30, |
|
stacks=3, |
|
residual_channels=64, |
|
gate_channels=128, |
|
skip_channels=64, |
|
aux_channels=80, |
|
aux_context_window=2, |
|
dropout=0.0, |
|
bias=True, |
|
use_weight_norm=True, |
|
use_causal_conv=False, |
|
upsample_conditional_features=True, |
|
upsample_net="ConvInUpsampleNetwork", |
|
upsample_params={"upsample_scales": [4, 4, 4, 4]}, |
|
use_pitch_embed=False, |
|
): |
|
"""Initialize Parallel WaveGAN Generator module. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
kernel_size (int): Kernel size of dilated convolution. |
|
layers (int): Number of residual block layers. |
|
stacks (int): Number of stacks i.e., dilation cycles. |
|
residual_channels (int): Number of channels in residual conv. |
|
gate_channels (int): Number of channels in gated conv. |
|
skip_channels (int): Number of channels in skip conv. |
|
aux_channels (int): Number of channels for auxiliary feature conv. |
|
aux_context_window (int): Context window size for auxiliary feature. |
|
dropout (float): Dropout rate. 0.0 means no dropout applied. |
|
bias (bool): Whether to use bias parameter in conv layer. |
|
use_weight_norm (bool): Whether to use weight norm. |
|
If set to true, it will be applied to all of the conv layers. |
|
use_causal_conv (bool): Whether to use causal structure. |
|
upsample_conditional_features (bool): Whether to use upsampling network. |
|
upsample_net (str): Upsampling network architecture. |
|
upsample_params (dict): Upsampling network parameters. |
|
|
|
""" |
|
super(ParallelWaveGANGenerator, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.aux_channels = aux_channels |
|
self.layers = layers |
|
self.stacks = stacks |
|
self.kernel_size = kernel_size |
|
|
|
|
|
assert layers % stacks == 0 |
|
layers_per_stack = layers // stacks |
|
|
|
|
|
self.first_conv = Conv1d1x1(in_channels, residual_channels, bias=True) |
|
|
|
|
|
if upsample_conditional_features: |
|
upsample_params.update({ |
|
"use_causal_conv": use_causal_conv, |
|
}) |
|
if upsample_net == "MelGANGenerator": |
|
assert aux_context_window == 0 |
|
upsample_params.update({ |
|
"use_weight_norm": False, |
|
"use_final_nonlinear_activation": False, |
|
}) |
|
self.upsample_net = getattr(models, upsample_net)(**upsample_params) |
|
else: |
|
if upsample_net == "ConvInUpsampleNetwork": |
|
upsample_params.update({ |
|
"aux_channels": aux_channels, |
|
"aux_context_window": aux_context_window, |
|
}) |
|
self.upsample_net = getattr(upsample, upsample_net)(**upsample_params) |
|
else: |
|
self.upsample_net = None |
|
|
|
|
|
self.conv_layers = torch.nn.ModuleList() |
|
for layer in range(layers): |
|
dilation = 2 ** (layer % layers_per_stack) |
|
conv = ResidualBlock( |
|
kernel_size=kernel_size, |
|
residual_channels=residual_channels, |
|
gate_channels=gate_channels, |
|
skip_channels=skip_channels, |
|
aux_channels=aux_channels, |
|
dilation=dilation, |
|
dropout=dropout, |
|
bias=bias, |
|
use_causal_conv=use_causal_conv, |
|
) |
|
self.conv_layers += [conv] |
|
|
|
|
|
self.last_conv_layers = torch.nn.ModuleList([ |
|
torch.nn.ReLU(inplace=True), |
|
Conv1d1x1(skip_channels, skip_channels, bias=True), |
|
torch.nn.ReLU(inplace=True), |
|
Conv1d1x1(skip_channels, out_channels, bias=True), |
|
]) |
|
|
|
self.use_pitch_embed = use_pitch_embed |
|
if use_pitch_embed: |
|
self.pitch_embed = nn.Embedding(300, aux_channels, 0) |
|
self.c_proj = nn.Linear(2 * aux_channels, aux_channels) |
|
|
|
|
|
if use_weight_norm: |
|
self.apply_weight_norm() |
|
|
|
def forward(self, x, c=None, pitch=None, **kwargs): |
|
"""Calculate forward propagation. |
|
|
|
Args: |
|
x (Tensor): Input noise signal (B, C_in, T). |
|
c (Tensor): Local conditioning auxiliary features (B, C ,T'). |
|
pitch (Tensor): Local conditioning pitch (B, T'). |
|
|
|
Returns: |
|
Tensor: Output tensor (B, C_out, T) |
|
|
|
""" |
|
|
|
if c is not None and self.upsample_net is not None: |
|
if self.use_pitch_embed: |
|
p = self.pitch_embed(pitch) |
|
c = self.c_proj(torch.cat([c.transpose(1, 2), p], -1)).transpose(1, 2) |
|
c = self.upsample_net(c) |
|
assert c.size(-1) == x.size(-1), (c.size(-1), x.size(-1)) |
|
|
|
|
|
x = self.first_conv(x) |
|
skips = 0 |
|
for f in self.conv_layers: |
|
x, h = f(x, c) |
|
skips += h |
|
skips *= math.sqrt(1.0 / len(self.conv_layers)) |
|
|
|
|
|
x = skips |
|
for f in self.last_conv_layers: |
|
x = f(x) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
"""Remove weight normalization module from all of the layers.""" |
|
def _remove_weight_norm(m): |
|
try: |
|
logging.debug(f"Weight norm is removed from {m}.") |
|
torch.nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
return |
|
|
|
self.apply(_remove_weight_norm) |
|
|
|
def apply_weight_norm(self): |
|
"""Apply weight normalization module from all of the layers.""" |
|
def _apply_weight_norm(m): |
|
if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.Conv2d): |
|
torch.nn.utils.weight_norm(m) |
|
logging.debug(f"Weight norm is applied to {m}.") |
|
|
|
self.apply(_apply_weight_norm) |
|
|
|
@staticmethod |
|
def _get_receptive_field_size(layers, stacks, kernel_size, |
|
dilation=lambda x: 2 ** x): |
|
assert layers % stacks == 0 |
|
layers_per_cycle = layers // stacks |
|
dilations = [dilation(i % layers_per_cycle) for i in range(layers)] |
|
return (kernel_size - 1) * sum(dilations) + 1 |
|
|
|
@property |
|
def receptive_field_size(self): |
|
"""Return receptive field size.""" |
|
return self._get_receptive_field_size(self.layers, self.stacks, self.kernel_size) |
|
|
|
|
|
class ParallelWaveGANDiscriminator(torch.nn.Module): |
|
"""Parallel WaveGAN Discriminator module.""" |
|
|
|
def __init__(self, |
|
in_channels=1, |
|
out_channels=1, |
|
kernel_size=3, |
|
layers=10, |
|
conv_channels=64, |
|
dilation_factor=1, |
|
nonlinear_activation="LeakyReLU", |
|
nonlinear_activation_params={"negative_slope": 0.2}, |
|
bias=True, |
|
use_weight_norm=True, |
|
): |
|
"""Initialize Parallel WaveGAN Discriminator module. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
kernel_size (int): Number of output channels. |
|
layers (int): Number of conv layers. |
|
conv_channels (int): Number of chnn layers. |
|
dilation_factor (int): Dilation factor. For example, if dilation_factor = 2, |
|
the dilation will be 2, 4, 8, ..., and so on. |
|
nonlinear_activation (str): Nonlinear function after each conv. |
|
nonlinear_activation_params (dict): Nonlinear function parameters |
|
bias (bool): Whether to use bias parameter in conv. |
|
use_weight_norm (bool) Whether to use weight norm. |
|
If set to true, it will be applied to all of the conv layers. |
|
|
|
""" |
|
super(ParallelWaveGANDiscriminator, self).__init__() |
|
assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size." |
|
assert dilation_factor > 0, "Dilation factor must be > 0." |
|
self.conv_layers = torch.nn.ModuleList() |
|
conv_in_channels = in_channels |
|
for i in range(layers - 1): |
|
if i == 0: |
|
dilation = 1 |
|
else: |
|
dilation = i if dilation_factor == 1 else dilation_factor ** i |
|
conv_in_channels = conv_channels |
|
padding = (kernel_size - 1) // 2 * dilation |
|
conv_layer = [ |
|
Conv1d(conv_in_channels, conv_channels, |
|
kernel_size=kernel_size, padding=padding, |
|
dilation=dilation, bias=bias), |
|
getattr(torch.nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params) |
|
] |
|
self.conv_layers += conv_layer |
|
padding = (kernel_size - 1) // 2 |
|
last_conv_layer = Conv1d( |
|
conv_in_channels, out_channels, |
|
kernel_size=kernel_size, padding=padding, bias=bias) |
|
self.conv_layers += [last_conv_layer] |
|
|
|
|
|
if use_weight_norm: |
|
self.apply_weight_norm() |
|
|
|
def forward(self, x): |
|
"""Calculate forward propagation. |
|
|
|
Args: |
|
x (Tensor): Input noise signal (B, 1, T). |
|
|
|
Returns: |
|
Tensor: Output tensor (B, 1, T) |
|
|
|
""" |
|
for f in self.conv_layers: |
|
x = f(x) |
|
return x |
|
|
|
def apply_weight_norm(self): |
|
"""Apply weight normalization module from all of the layers.""" |
|
def _apply_weight_norm(m): |
|
if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.Conv2d): |
|
torch.nn.utils.weight_norm(m) |
|
logging.debug(f"Weight norm is applied to {m}.") |
|
|
|
self.apply(_apply_weight_norm) |
|
|
|
def remove_weight_norm(self): |
|
"""Remove weight normalization module from all of the layers.""" |
|
def _remove_weight_norm(m): |
|
try: |
|
logging.debug(f"Weight norm is removed from {m}.") |
|
torch.nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
return |
|
|
|
self.apply(_remove_weight_norm) |
|
|
|
|
|
class ResidualParallelWaveGANDiscriminator(torch.nn.Module): |
|
"""Parallel WaveGAN Discriminator module.""" |
|
|
|
def __init__(self, |
|
in_channels=1, |
|
out_channels=1, |
|
kernel_size=3, |
|
layers=30, |
|
stacks=3, |
|
residual_channels=64, |
|
gate_channels=128, |
|
skip_channels=64, |
|
dropout=0.0, |
|
bias=True, |
|
use_weight_norm=True, |
|
use_causal_conv=False, |
|
nonlinear_activation="LeakyReLU", |
|
nonlinear_activation_params={"negative_slope": 0.2}, |
|
): |
|
"""Initialize Parallel WaveGAN Discriminator module. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
kernel_size (int): Kernel size of dilated convolution. |
|
layers (int): Number of residual block layers. |
|
stacks (int): Number of stacks i.e., dilation cycles. |
|
residual_channels (int): Number of channels in residual conv. |
|
gate_channels (int): Number of channels in gated conv. |
|
skip_channels (int): Number of channels in skip conv. |
|
dropout (float): Dropout rate. 0.0 means no dropout applied. |
|
bias (bool): Whether to use bias parameter in conv. |
|
use_weight_norm (bool): Whether to use weight norm. |
|
If set to true, it will be applied to all of the conv layers. |
|
use_causal_conv (bool): Whether to use causal structure. |
|
nonlinear_activation_params (dict): Nonlinear function parameters |
|
|
|
""" |
|
super(ResidualParallelWaveGANDiscriminator, self).__init__() |
|
assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size." |
|
|
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.layers = layers |
|
self.stacks = stacks |
|
self.kernel_size = kernel_size |
|
|
|
|
|
assert layers % stacks == 0 |
|
layers_per_stack = layers // stacks |
|
|
|
|
|
self.first_conv = torch.nn.Sequential( |
|
Conv1d1x1(in_channels, residual_channels, bias=True), |
|
getattr(torch.nn, nonlinear_activation)( |
|
inplace=True, **nonlinear_activation_params), |
|
) |
|
|
|
|
|
self.conv_layers = torch.nn.ModuleList() |
|
for layer in range(layers): |
|
dilation = 2 ** (layer % layers_per_stack) |
|
conv = ResidualBlock( |
|
kernel_size=kernel_size, |
|
residual_channels=residual_channels, |
|
gate_channels=gate_channels, |
|
skip_channels=skip_channels, |
|
aux_channels=-1, |
|
dilation=dilation, |
|
dropout=dropout, |
|
bias=bias, |
|
use_causal_conv=use_causal_conv, |
|
) |
|
self.conv_layers += [conv] |
|
|
|
|
|
self.last_conv_layers = torch.nn.ModuleList([ |
|
getattr(torch.nn, nonlinear_activation)( |
|
inplace=True, **nonlinear_activation_params), |
|
Conv1d1x1(skip_channels, skip_channels, bias=True), |
|
getattr(torch.nn, nonlinear_activation)( |
|
inplace=True, **nonlinear_activation_params), |
|
Conv1d1x1(skip_channels, out_channels, bias=True), |
|
]) |
|
|
|
|
|
if use_weight_norm: |
|
self.apply_weight_norm() |
|
|
|
def forward(self, x): |
|
"""Calculate forward propagation. |
|
|
|
Args: |
|
x (Tensor): Input noise signal (B, 1, T). |
|
|
|
Returns: |
|
Tensor: Output tensor (B, 1, T) |
|
|
|
""" |
|
x = self.first_conv(x) |
|
|
|
skips = 0 |
|
for f in self.conv_layers: |
|
x, h = f(x, None) |
|
skips += h |
|
skips *= math.sqrt(1.0 / len(self.conv_layers)) |
|
|
|
|
|
x = skips |
|
for f in self.last_conv_layers: |
|
x = f(x) |
|
return x |
|
|
|
def apply_weight_norm(self): |
|
"""Apply weight normalization module from all of the layers.""" |
|
def _apply_weight_norm(m): |
|
if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.Conv2d): |
|
torch.nn.utils.weight_norm(m) |
|
logging.debug(f"Weight norm is applied to {m}.") |
|
|
|
self.apply(_apply_weight_norm) |
|
|
|
def remove_weight_norm(self): |
|
"""Remove weight normalization module from all of the layers.""" |
|
def _remove_weight_norm(m): |
|
try: |
|
logging.debug(f"Weight norm is removed from {m}.") |
|
torch.nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
return |
|
|
|
self.apply(_remove_weight_norm) |
|
|