|
import torch |
|
|
|
import utils |
|
from utils.hparams import hparams |
|
from modules.diff.net import DiffNet |
|
from modules.diff.shallow_diffusion_tts import GaussianDiffusion, OfflineGaussianDiffusion |
|
from tasks.svs.diffspeech_task import DiffSpeechTask |
|
from vocoders.base_vocoder import get_vocoder_cls, BaseVocoder |
|
from modules.fastspeech.pe import PitchExtractor |
|
from modules.fastspeech.fs2 import FastSpeech2 |
|
from modules.diffsinger_midi.fs2 import FastSpeech2MIDI |
|
from modules.fastspeech.tts_modules import mel2ph_to_dur |
|
|
|
from modules.diff.candidate_decoder import FFT |
|
from utils.pitch_utils import denorm_f0 |
|
from tasks.tts.fs2_utils import FastSpeechDataset |
|
from tasks.tts.fs2 import FastSpeech2Task |
|
|
|
import numpy as np |
|
import os |
|
import torch.nn.functional as F |
|
|
|
DIFF_DECODERS = { |
|
'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']), |
|
'fft': lambda hp: FFT( |
|
hp['hidden_size'], hp['dec_layers'], hp['dec_ffn_kernel_size'], hp['num_heads']), |
|
} |
|
|
|
|
|
class DiffSingerTask(DiffSpeechTask): |
|
def __init__(self): |
|
super(DiffSingerTask, self).__init__() |
|
self.dataset_cls = FastSpeechDataset |
|
self.vocoder: BaseVocoder = get_vocoder_cls(hparams)() |
|
if hparams.get('pe_enable') is not None and hparams['pe_enable']: |
|
self.pe = PitchExtractor().cuda() |
|
utils.load_ckpt(self.pe, hparams['pe_ckpt'], 'model', strict=True) |
|
self.pe.eval() |
|
|
|
def build_tts_model(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mel_bins = hparams['audio_num_mel_bins'] |
|
self.model = GaussianDiffusion( |
|
phone_encoder=self.phone_encoder, |
|
out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), |
|
timesteps=hparams['timesteps'], |
|
K_step=hparams['K_step'], |
|
loss_type=hparams['diff_loss_type'], |
|
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], |
|
) |
|
if hparams['fs2_ckpt'] != '': |
|
utils.load_ckpt(self.model.fs2, hparams['fs2_ckpt'], 'model', strict=True) |
|
|
|
for k, v in self.model.fs2.named_parameters(): |
|
v.requires_grad = False |
|
|
|
def validation_step(self, sample, batch_idx): |
|
outputs = {} |
|
txt_tokens = sample['txt_tokens'] |
|
|
|
target = sample['mels'] |
|
energy = sample['energy'] |
|
|
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
mel2ph = sample['mel2ph'] |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
|
|
outputs['losses'] = {} |
|
|
|
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) |
|
|
|
|
|
outputs['total_loss'] = sum(outputs['losses'].values()) |
|
outputs['nsamples'] = sample['nsamples'] |
|
outputs = utils.tensors_to_scalars(outputs) |
|
if batch_idx < hparams['num_valid_plots']: |
|
model_out = self.model( |
|
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, energy=energy, ref_mels=None, infer=True) |
|
|
|
if hparams.get('pe_enable') is not None and hparams['pe_enable']: |
|
gt_f0 = self.pe(sample['mels'])['f0_denorm_pred'] |
|
pred_f0 = self.pe(model_out['mel_out'])['f0_denorm_pred'] |
|
else: |
|
gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) |
|
pred_f0 = model_out.get('f0_denorm') |
|
self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0) |
|
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}') |
|
self.plot_mel(batch_idx, sample['mels'], model_out['fs2_mel'], name=f'fs2mel_{batch_idx}') |
|
return outputs |
|
|
|
|
|
class ShallowDiffusionOfflineDataset(FastSpeechDataset): |
|
def __getitem__(self, index): |
|
sample = super(ShallowDiffusionOfflineDataset, self).__getitem__(index) |
|
item = self._get_item(index) |
|
|
|
if self.prefix != 'train' and hparams['fs2_ckpt'] != '': |
|
fs2_ckpt = os.path.dirname(hparams['fs2_ckpt']) |
|
item_name = item['item_name'] |
|
fs2_mel = torch.Tensor(np.load(f'{fs2_ckpt}/P_mels_npy/{item_name}.npy')) |
|
sample['fs2_mel'] = fs2_mel |
|
return sample |
|
|
|
def collater(self, samples): |
|
batch = super(ShallowDiffusionOfflineDataset, self).collater(samples) |
|
if self.prefix != 'train' and hparams['fs2_ckpt'] != '': |
|
batch['fs2_mels'] = utils.collate_2d([s['fs2_mel'] for s in samples], 0.0) |
|
return batch |
|
|
|
|
|
class DiffSingerOfflineTask(DiffSingerTask): |
|
def __init__(self): |
|
super(DiffSingerOfflineTask, self).__init__() |
|
self.dataset_cls = ShallowDiffusionOfflineDataset |
|
|
|
def build_tts_model(self): |
|
mel_bins = hparams['audio_num_mel_bins'] |
|
self.model = OfflineGaussianDiffusion( |
|
phone_encoder=self.phone_encoder, |
|
out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), |
|
timesteps=hparams['timesteps'], |
|
K_step=hparams['K_step'], |
|
loss_type=hparams['diff_loss_type'], |
|
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], |
|
) |
|
|
|
|
|
|
|
|
|
def run_model(self, model, sample, return_output=False, infer=False): |
|
txt_tokens = sample['txt_tokens'] |
|
target = sample['mels'] |
|
mel2ph = sample['mel2ph'] |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
energy = sample['energy'] |
|
fs2_mel = None |
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
if hparams['pitch_type'] == 'cwt': |
|
cwt_spec = sample[f'cwt_spec'] |
|
f0_mean = sample['f0_mean'] |
|
f0_std = sample['f0_std'] |
|
sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) |
|
|
|
output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, |
|
ref_mels=[target, fs2_mel], f0=f0, uv=uv, energy=energy, infer=infer) |
|
|
|
losses = {} |
|
if 'diff_loss' in output: |
|
losses['mel'] = output['diff_loss'] |
|
|
|
|
|
|
|
if hparams['use_energy_embed']: |
|
self.add_energy_loss(output['energy_pred'], energy, losses) |
|
|
|
if not return_output: |
|
return losses |
|
else: |
|
return losses, output |
|
|
|
def validation_step(self, sample, batch_idx): |
|
outputs = {} |
|
txt_tokens = sample['txt_tokens'] |
|
|
|
target = sample['mels'] |
|
energy = sample['energy'] |
|
|
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
mel2ph = sample['mel2ph'] |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
|
|
outputs['losses'] = {} |
|
|
|
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) |
|
|
|
|
|
outputs['total_loss'] = sum(outputs['losses'].values()) |
|
outputs['nsamples'] = sample['nsamples'] |
|
outputs = utils.tensors_to_scalars(outputs) |
|
if batch_idx < hparams['num_valid_plots']: |
|
fs2_mel = sample['fs2_mels'] |
|
model_out = self.model( |
|
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, energy=energy, |
|
ref_mels=[None, fs2_mel], infer=True) |
|
if hparams.get('pe_enable') is not None and hparams['pe_enable']: |
|
gt_f0 = self.pe(sample['mels'])['f0_denorm_pred'] |
|
pred_f0 = self.pe(model_out['mel_out'])['f0_denorm_pred'] |
|
else: |
|
gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) |
|
pred_f0 = model_out.get('f0_denorm') |
|
self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0) |
|
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}') |
|
self.plot_mel(batch_idx, sample['mels'], fs2_mel, name=f'fs2mel_{batch_idx}') |
|
return outputs |
|
|
|
def test_step(self, sample, batch_idx): |
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
txt_tokens = sample['txt_tokens'] |
|
energy = sample['energy'] |
|
if hparams['profile_infer']: |
|
pass |
|
else: |
|
mel2ph, uv, f0 = None, None, None |
|
if hparams['use_gt_dur']: |
|
mel2ph = sample['mel2ph'] |
|
if hparams['use_gt_f0']: |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
fs2_mel = sample['fs2_mels'] |
|
outputs = self.model( |
|
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=[None, fs2_mel], energy=energy, |
|
infer=True) |
|
sample['outputs'] = self.model.out2mel(outputs['mel_out']) |
|
sample['mel2ph_pred'] = outputs['mel2ph'] |
|
|
|
if hparams.get('pe_enable') is not None and hparams['pe_enable']: |
|
sample['f0'] = self.pe(sample['mels'])['f0_denorm_pred'] |
|
sample['f0_pred'] = self.pe(sample['outputs'])['f0_denorm_pred'] |
|
else: |
|
sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams) |
|
sample['f0_pred'] = outputs.get('f0_denorm') |
|
return self.after_infer(sample) |
|
|
|
|
|
class MIDIDataset(FastSpeechDataset): |
|
def __getitem__(self, index): |
|
sample = super(MIDIDataset, self).__getitem__(index) |
|
item = self._get_item(index) |
|
sample['f0_midi'] = torch.FloatTensor(item['f0_midi']) |
|
sample['pitch_midi'] = torch.LongTensor(item['pitch_midi'])[:hparams['max_frames']] |
|
|
|
return sample |
|
|
|
def collater(self, samples): |
|
batch = super(MIDIDataset, self).collater(samples) |
|
batch['f0_midi'] = utils.collate_1d([s['f0_midi'] for s in samples], 0.0) |
|
batch['pitch_midi'] = utils.collate_1d([s['pitch_midi'] for s in samples], 0) |
|
|
|
return batch |
|
|
|
|
|
class OpencpopDataset(FastSpeechDataset): |
|
def __getitem__(self, index): |
|
sample = super(OpencpopDataset, self).__getitem__(index) |
|
item = self._get_item(index) |
|
sample['pitch_midi'] = torch.LongTensor(item['pitch_midi'])[:hparams['max_frames']] |
|
sample['midi_dur'] = torch.FloatTensor(item['midi_dur'])[:hparams['max_frames']] |
|
sample['is_slur'] = torch.LongTensor(item['is_slur'])[:hparams['max_frames']] |
|
sample['word_boundary'] = torch.LongTensor(item['word_boundary'])[:hparams['max_frames']] |
|
return sample |
|
|
|
def collater(self, samples): |
|
batch = super(OpencpopDataset, self).collater(samples) |
|
batch['pitch_midi'] = utils.collate_1d([s['pitch_midi'] for s in samples], 0) |
|
batch['midi_dur'] = utils.collate_1d([s['midi_dur'] for s in samples], 0) |
|
batch['is_slur'] = utils.collate_1d([s['is_slur'] for s in samples], 0) |
|
batch['word_boundary'] = utils.collate_1d([s['word_boundary'] for s in samples], 0) |
|
return batch |
|
|
|
|
|
class DiffSingerMIDITask(DiffSingerTask): |
|
def __init__(self): |
|
super(DiffSingerMIDITask, self).__init__() |
|
|
|
self.dataset_cls = OpencpopDataset |
|
|
|
def run_model(self, model, sample, return_output=False, infer=False): |
|
txt_tokens = sample['txt_tokens'] |
|
target = sample['mels'] |
|
|
|
mel2ph = sample['mel2ph'] |
|
if hparams.get('switch_midi2f0_step') is not None and self.global_step > hparams['switch_midi2f0_step']: |
|
f0 = None |
|
uv = None |
|
else: |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
energy = sample['energy'] |
|
|
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
if hparams['pitch_type'] == 'cwt': |
|
cwt_spec = sample[f'cwt_spec'] |
|
f0_mean = sample['f0_mean'] |
|
f0_std = sample['f0_std'] |
|
sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) |
|
|
|
output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, |
|
ref_mels=target, f0=f0, uv=uv, energy=energy, infer=infer, pitch_midi=sample['pitch_midi'], |
|
midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur')) |
|
|
|
losses = {} |
|
if 'diff_loss' in output: |
|
losses['mel'] = output['diff_loss'] |
|
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, sample['word_boundary'], losses=losses) |
|
if hparams['use_pitch_embed']: |
|
self.add_pitch_loss(output, sample, losses) |
|
if hparams['use_energy_embed']: |
|
self.add_energy_loss(output['energy_pred'], energy, losses) |
|
if not return_output: |
|
return losses |
|
else: |
|
return losses, output |
|
|
|
def validation_step(self, sample, batch_idx): |
|
outputs = {} |
|
txt_tokens = sample['txt_tokens'] |
|
|
|
target = sample['mels'] |
|
energy = sample['energy'] |
|
|
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
mel2ph = sample['mel2ph'] |
|
|
|
outputs['losses'] = {} |
|
|
|
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) |
|
|
|
outputs['total_loss'] = sum(outputs['losses'].values()) |
|
outputs['nsamples'] = sample['nsamples'] |
|
outputs = utils.tensors_to_scalars(outputs) |
|
if batch_idx < hparams['num_valid_plots']: |
|
model_out = self.model( |
|
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=None, uv=None, energy=energy, ref_mels=None, infer=True, |
|
pitch_midi=sample['pitch_midi'], midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur')) |
|
|
|
if hparams.get('pe_enable') is not None and hparams['pe_enable']: |
|
gt_f0 = self.pe(sample['mels'])['f0_denorm_pred'] |
|
pred_f0 = self.pe(model_out['mel_out'])['f0_denorm_pred'] |
|
else: |
|
gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) |
|
pred_f0 = model_out.get('f0_denorm') |
|
self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0) |
|
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}') |
|
self.plot_mel(batch_idx, sample['mels'], model_out['fs2_mel'], name=f'fs2mel_{batch_idx}') |
|
if hparams['use_pitch_embed']: |
|
self.plot_pitch(batch_idx, sample, model_out) |
|
return outputs |
|
|
|
def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, wdb, losses=None): |
|
""" |
|
:param dur_pred: [B, T], float, log scale |
|
:param mel2ph: [B, T] |
|
:param txt_tokens: [B, T] |
|
:param losses: |
|
:return: |
|
""" |
|
B, T = txt_tokens.shape |
|
nonpadding = (txt_tokens != 0).float() |
|
dur_gt = mel2ph_to_dur(mel2ph, T).float() * nonpadding |
|
is_sil = torch.zeros_like(txt_tokens).bool() |
|
for p in self.sil_ph: |
|
is_sil = is_sil | (txt_tokens == self.phone_encoder.encode(p)[0]) |
|
is_sil = is_sil.float() |
|
|
|
|
|
if hparams['dur_loss'] == 'mse': |
|
losses['pdur'] = F.mse_loss(dur_pred, (dur_gt + 1).log(), reduction='none') |
|
losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum() |
|
dur_pred = (dur_pred.exp() - 1).clamp(min=0) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
if hparams['lambda_word_dur'] > 0: |
|
idx = F.pad(wdb.cumsum(axis=1), (1, 0))[:, :-1] |
|
|
|
word_dur_p = dur_pred.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_pred) |
|
word_dur_g = dur_gt.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_gt) |
|
wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none') |
|
word_nonpadding = (word_dur_g > 0).float() |
|
wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum() |
|
losses['wdur'] = wdur_loss * hparams['lambda_word_dur'] |
|
if hparams['lambda_sent_dur'] > 0: |
|
sent_dur_p = dur_pred.sum(-1) |
|
sent_dur_g = dur_gt.sum(-1) |
|
sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean') |
|
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur'] |
|
|
|
|
|
class AuxDecoderMIDITask(FastSpeech2Task): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
self.dataset_cls = OpencpopDataset |
|
|
|
def build_tts_model(self): |
|
if hparams.get('use_midi') is not None and hparams['use_midi']: |
|
self.model = FastSpeech2MIDI(self.phone_encoder) |
|
else: |
|
self.model = FastSpeech2(self.phone_encoder) |
|
|
|
def run_model(self, model, sample, return_output=False): |
|
txt_tokens = sample['txt_tokens'] |
|
target = sample['mels'] |
|
mel2ph = sample['mel2ph'] |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
energy = sample['energy'] |
|
|
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
if hparams['pitch_type'] == 'cwt': |
|
cwt_spec = sample[f'cwt_spec'] |
|
f0_mean = sample['f0_mean'] |
|
f0_std = sample['f0_std'] |
|
sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) |
|
|
|
output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, |
|
ref_mels=target, f0=f0, uv=uv, energy=energy, infer=False, pitch_midi=sample['pitch_midi'], |
|
midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur')) |
|
|
|
losses = {} |
|
self.add_mel_loss(output['mel_out'], target, losses) |
|
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, sample['word_boundary'], losses=losses) |
|
if hparams['use_pitch_embed']: |
|
self.add_pitch_loss(output, sample, losses) |
|
if hparams['use_energy_embed']: |
|
self.add_energy_loss(output['energy_pred'], energy, losses) |
|
if not return_output: |
|
return losses |
|
else: |
|
return losses, output |
|
|
|
def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, wdb, losses=None): |
|
""" |
|
:param dur_pred: [B, T], float, log scale |
|
:param mel2ph: [B, T] |
|
:param txt_tokens: [B, T] |
|
:param losses: |
|
:return: |
|
""" |
|
B, T = txt_tokens.shape |
|
nonpadding = (txt_tokens != 0).float() |
|
dur_gt = mel2ph_to_dur(mel2ph, T).float() * nonpadding |
|
is_sil = torch.zeros_like(txt_tokens).bool() |
|
for p in self.sil_ph: |
|
is_sil = is_sil | (txt_tokens == self.phone_encoder.encode(p)[0]) |
|
is_sil = is_sil.float() |
|
|
|
|
|
if hparams['dur_loss'] == 'mse': |
|
losses['pdur'] = F.mse_loss(dur_pred, (dur_gt + 1).log(), reduction='none') |
|
losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum() |
|
dur_pred = (dur_pred.exp() - 1).clamp(min=0) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
if hparams['lambda_word_dur'] > 0: |
|
idx = F.pad(wdb.cumsum(axis=1), (1, 0))[:, :-1] |
|
|
|
word_dur_p = dur_pred.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_pred) |
|
word_dur_g = dur_gt.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_gt) |
|
wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none') |
|
word_nonpadding = (word_dur_g > 0).float() |
|
wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum() |
|
losses['wdur'] = wdur_loss * hparams['lambda_word_dur'] |
|
if hparams['lambda_sent_dur'] > 0: |
|
sent_dur_p = dur_pred.sum(-1) |
|
sent_dur_g = dur_gt.sum(-1) |
|
sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean') |
|
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur'] |
|
|
|
def validation_step(self, sample, batch_idx): |
|
outputs = {} |
|
outputs['losses'] = {} |
|
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True) |
|
outputs['total_loss'] = sum(outputs['losses'].values()) |
|
outputs['nsamples'] = sample['nsamples'] |
|
mel_out = self.model.out2mel(model_out['mel_out']) |
|
outputs = utils.tensors_to_scalars(outputs) |
|
|
|
|
|
if batch_idx < hparams['num_valid_plots']: |
|
self.plot_mel(batch_idx, sample['mels'], mel_out) |
|
self.plot_dur(batch_idx, sample, model_out) |
|
if hparams['use_pitch_embed']: |
|
self.plot_pitch(batch_idx, sample, model_out) |
|
return outputs |