|
import math |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence |
|
|
|
|
|
def sort_pack_padded_sequence(input, lengths): |
|
sorted_lengths, indices = torch.sort(lengths, descending=True) |
|
tmp = pack_padded_sequence(input[indices], sorted_lengths.cpu(), batch_first=True) |
|
inv_ix = indices.clone() |
|
inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix) |
|
return tmp, inv_ix |
|
|
|
def pad_unsort_packed_sequence(input, inv_ix): |
|
tmp, _ = pad_packed_sequence(input, batch_first=True) |
|
tmp = tmp[inv_ix] |
|
return tmp |
|
|
|
def pack_wrapper(module, attn_feats, attn_feat_lens): |
|
packed, inv_ix = sort_pack_padded_sequence(attn_feats, attn_feat_lens) |
|
if isinstance(module, torch.nn.RNNBase): |
|
return pad_unsort_packed_sequence(module(packed)[0], inv_ix) |
|
else: |
|
return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix) |
|
|
|
def generate_length_mask(lens, max_length=None): |
|
lens = torch.as_tensor(lens) |
|
N = lens.size(0) |
|
if max_length is None: |
|
max_length = max(lens) |
|
idxs = torch.arange(max_length).repeat(N).view(N, max_length) |
|
idxs = idxs.to(lens.device) |
|
mask = (idxs < lens.view(-1, 1)) |
|
return mask |
|
|
|
def mean_with_lens(features, lens): |
|
""" |
|
features: [N, T, ...] (assume the second dimension represents length) |
|
lens: [N,] |
|
""" |
|
lens = torch.as_tensor(lens) |
|
if max(lens) != features.size(1): |
|
max_length = features.size(1) |
|
mask = generate_length_mask(lens, max_length) |
|
else: |
|
mask = generate_length_mask(lens) |
|
mask = mask.to(features.device) |
|
|
|
while mask.ndim < features.ndim: |
|
mask = mask.unsqueeze(-1) |
|
feature_mean = features * mask |
|
feature_mean = feature_mean.sum(1) |
|
while lens.ndim < feature_mean.ndim: |
|
lens = lens.unsqueeze(1) |
|
feature_mean = feature_mean / lens.to(features.device) |
|
|
|
|
|
return feature_mean |
|
|
|
def max_with_lens(features, lens): |
|
""" |
|
features: [N, T, ...] (assume the second dimension represents length) |
|
lens: [N,] |
|
""" |
|
lens = torch.as_tensor(lens) |
|
mask = generate_length_mask(lens).to(features.device) |
|
|
|
feature_max = features.clone() |
|
feature_max[~mask] = float("-inf") |
|
feature_max, _ = feature_max.max(1) |
|
return feature_max |
|
|
|
def repeat_tensor(x, n): |
|
return x.unsqueeze(0).repeat(n, *([1] * len(x.shape))) |
|
|
|
def init(m, method="kaiming"): |
|
if isinstance(m, (nn.Conv2d, nn.Conv1d)): |
|
if method == "kaiming": |
|
nn.init.kaiming_uniform_(m.weight) |
|
elif method == "xavier": |
|
nn.init.xavier_uniform_(m.weight) |
|
else: |
|
raise Exception(f"initialization method {method} not supported") |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)): |
|
nn.init.constant_(m.weight, 1) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
if method == "kaiming": |
|
nn.init.kaiming_uniform_(m.weight) |
|
elif method == "xavier": |
|
nn.init.xavier_uniform_(m.weight) |
|
else: |
|
raise Exception(f"initialization method {method} not supported") |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Embedding): |
|
if method == "kaiming": |
|
nn.init.kaiming_uniform_(m.weight) |
|
elif method == "xavier": |
|
nn.init.xavier_uniform_(m.weight) |
|
else: |
|
raise Exception(f"initialization method {method} not supported") |
|
|
|
|
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
|
|
def __init__(self, d_model, dropout=0.1, max_len=100): |
|
super(PositionalEncoding, self).__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * \ |
|
(-math.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0).transpose(0, 1) |
|
|
|
self.register_parameter("pe", nn.Parameter(pe, requires_grad=False)) |
|
|
|
def forward(self, x): |
|
|
|
x = x + self.pe[:x.size(0), :] |
|
return self.dropout(x) |
|
|