File size: 33,291 Bytes
4d5aff4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 |
#! /usr/bin/env python3
# coding=utf-8
# This code is licensed under a non-commercial license.
#230
import argparse
import csv
import json
import math
import numpy as np
import os
import time
import torch
import torch.nn.functional as F
import torch.optim
import torch.optim as optim
import torch.utils.data as data
from nltk.tokenize.treebank import TreebankWordDetokenizer
from torchtext import data as torchtext_data
from torchtext import datasets
from tqdm import tqdm, trange
from transformers import BertTokenizer, BertModel
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from transformers import GPT2ForSequenceClassification
from datasets import load_dataset
from pplm_classification_head import ClassificationHead
torch.manual_seed(0)
np.random.seed(0)
EPSILON = 1e-10
example_sentence = "This is incredible! I love it, this is the best chicken I have ever had."
max_length_seq = 100
class Discriminator(torch.nn.Module):
"""Transformer encoder followed by a Classification Head"""
def __init__(
self,
class_size=None,
pretrained_model="gpt2-medium",
classifier_head=None,
cached_mode=False,
device='cpu',
fp=None,
is_deep=False,
is_deeper=False,
use_xlnet=False,
output_hidden_states=False,
unfreeze=False
):
super(Discriminator, self).__init__()
self.use_xlnet = use_xlnet
if pretrained_model.startswith("gpt2") or pretrained_model.startswith("microsoft/DialoGPT"):
self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model)
self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model, output_hidden_states=output_hidden_states)
self.embed_size = self.encoder.transformer.config.hidden_size
elif pretrained_model.startswith("bert"):
self.tokenizer = BertTokenizer.from_pretrained(pretrained_model)
self.encoder = BertModel.from_pretrained(pretrained_model)
self.embed_size = self.encoder.config.hidden_size
else:
try:
self.tokenizer = GPT2Tokenizer.from_pretrained("microsoft/DialoGPT-large")
self.encoder = GPT2LMHeadModel.from_pretrained("microsoft/DialoGPT-large", output_hidden_states=output_hidden_states)
self.encoder.load_state_dict(torch.load(pretrained_model))
self.embed_size = self.encoder.transformer.config.hidden_size
except:
raise ValueError(
"{} model not yet supported".format(pretrained_model)
)
if classifier_head:
self.classifier_head = classifier_head
else:
if not class_size:
raise ValueError("must specify class_size")
self.classifier_head = ClassificationHead(
class_size=class_size,
embed_size=self.embed_size,
is_deep=is_deep,
is_deeper=is_deeper,
use_xlnet=use_xlnet
)
if fp != None:
self.classifier_head.load_state_dict(
torch.load(fp, map_location=device))
self.cached_mode = cached_mode
self.device = device
self.unfreeze = unfreeze
def get_classifier(self):
return self.classifier_head
def train_custom(self):
for param in self.encoder.parameters():
param.requires_grad = self.unfreeze
self.classifier_head.train()
def avg_representation(self, x):
mask = x.ne(0).unsqueeze(2).repeat(
1, 1, self.embed_size
).float().to(self.device).detach()
if hasattr(self.encoder, 'transformer'):
# for gpt2
hidden, _ = self.encoder.transformer(x)
else:
# for bert
hidden, _ = self.encoder(x)
masked_hidden = hidden * mask
avg_hidden = torch.sum(masked_hidden, dim=1) / (
torch.sum(mask, dim=1).detach() + EPSILON
)
return avg_hidden
def forward(self, x):
if self.cached_mode:
avg_hidden = x.to(self.device)
else:
avg_hidden = self.avg_representation(x.to(self.device))
if self.use_xlnet:
logits = self.classifier_head(None, inputs_embeds=avg_hidden.unsqueeze(dim=2))
else:
logits = self.classifier_head(avg_hidden)
probs = F.log_softmax(logits, dim=-1)
avg_hidden, logits = avg_hidden.to("cpu"), logits.to("cpu")
return probs
def predict(self, input_sentence):
input_t = self.tokenizer.encode(input_sentence)
input_t = torch.tensor([input_t], dtype=torch.long, device=self.device)
if self.cached_mode:
input_t = self.avg_representation(input_t)
log_probs = self(input_t).data.cpu().numpy().flatten().tolist()
prob = [math.exp(log_prob) for log_prob in log_probs]
return prob
class Dataset(data.Dataset):
def __init__(self, X, y):
"""Reads source and target sequences from txt files."""
self.X = X
self.y = y
def __len__(self):
return len(self.X)
def __getitem__(self, index):
"""Returns one data pair (source and target)."""
data = {}
data["X"] = self.X[index]
data["y"] = self.y[index]
return data
def collate_fn(data):
def pad_sequences(sequences):
lengths = [len(seq) for seq in sequences]
padded_sequences = torch.zeros(
len(sequences),
min(max(lengths), 512)
).long() # padding value = 0
# append to new array and return that array instead
# or manually iterate?
errors = []
for i, seq in enumerate(sequences):
end = min(lengths[i], 512)
padded_sequences[i, :end] = seq[-end:]
return padded_sequences, lengths
item_info = {}
for key in data[0].keys():
item_info[key] = [d[key] for d in data]
x_batch, _ = pad_sequences(item_info["X"])
y_batch = torch.tensor(item_info["y"], dtype=torch.long)
return x_batch, y_batch
def cached_collate_fn(data):
item_info = {}
for key in data[0].keys():
item_info[key] = [d[key] for d in data]
x_batch = torch.cat(item_info["X"], 0)
y_batch = torch.tensor(item_info["y"], dtype=torch.long)
return x_batch, y_batch
def train_epoch(data_loader, discriminator, optimizer,
epoch=0, log_interval=10, device='cpu'):
samples_so_far = 0
discriminator.train_custom()
for batch_idx, (input_t, target_t) in enumerate(data_loader):
input_t, target_t = input_t.to(device), target_t.to(device)
samples_so_far += len(input_t)
if input_t.size()[-1] > 225: continue
optimizer.zero_grad()
output_t = discriminator(input_t)
loss = F.nll_loss(output_t, target_t)
loss.backward(retain_graph=True)
optimizer.step()
if batch_idx % log_interval == 0:
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch + 1,
samples_so_far, len(data_loader.dataset),
100 * samples_so_far / len(data_loader.dataset), loss.item()
)
)
input_t, target_t = input_t.to("cpu"), target_t.to("cpu")
output_t, loss = output_t.to("cpu"), loss.to("cpu")
del loss
del output_t
del input_t
del target_t
def evaluate_performance(data_loader, discriminator, device='cpu', check=False, classes=3):
discriminator.eval()
test_loss = 0
correct_count = 0
hist_len = {}
token_len = {}
label_len = {}
hist_cor = {}
token_cor = {}
label_cor = {}
comp_mat = [[0 for i in range(classes)] for j in range(classes)]
with torch.no_grad():
for batch_idx, (input_t, target_t) in enumerate(data_loader):
try:
input_t, target_t = input_t.to(device), target_t.to(device)
output_t = discriminator(input_t)
# sum up batch loss
test_loss += F.nll_loss(output_t, target_t, reduction="sum").item()
# get the index of the max log-probability
pred_t = output_t.argmax(dim=1, keepdim=True)
res = torch.squeeze(pred_t.eq(target_t.view_as(pred_t)))
for i, correct, in enumerate(res):
comp_mat[pred_t[i].item()][target_t[i].item()] += 1
if not correct:
tmp = input_t[i].tolist()
curCount = tmp.count(50256)
hist_len[curCount] = hist_len.get(curCount, 0) + 1
token_len[len(tmp)-tmp.count(0)] = token_len.get(len(tmp)-tmp.count(0), 0) + 1
label_len[target_t[i].item()] = label_len.get(target_t[i].item(), 0) + 1
else:
correct_count += 1
tmp = input_t[i].tolist()
curCount = tmp.count(50256)
hist_cor[curCount] = hist_cor.get(curCount, 0) + 1
token_cor[len(tmp)-tmp.count(0)] = token_cor.get(len(tmp)-tmp.count(0), 0) + 1
label_cor[target_t[i].item()] = label_cor.get(target_t[i].item(), 0) + 1
del input_t
del target_t
except:
continue
print(hist_len)
print(token_len)
print(label_len)
print(hist_cor)
print(token_cor)
print(label_cor)
print(comp_mat)
test_loss /= len(data_loader.dataset)
accuracy = correct_count / len(data_loader.dataset)
print(
"Performance on test set: "
"Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format(
test_loss, correct_count, len(data_loader.dataset),
100. * accuracy
)
)
return test_loss, accuracy
def predict(input_sentence, model, classes, cached=False, device='cpu'):
input_t = model.tokenizer.encode(input_sentence)
input_t = torch.tensor([input_t], dtype=torch.long, device=device)
if cached:
input_t = model.avg_representation(input_t)
log_probs = model(input_t).data.cpu().numpy().flatten().tolist()
print("Input sentence:", input_sentence)
print("Predictions:", ", ".join(
"{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in
zip(classes, log_probs)
))
def get_cached_data_loader(dataset, batch_size, discriminator,
shuffle=False, device='cpu'):
data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=batch_size,
collate_fn=collate_fn)
xs = []
ys = []
for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)):
with torch.no_grad():
x = x.to(device)
avg_rep = discriminator.avg_representation(x).cpu().detach()
avg_rep_list = torch.unbind(avg_rep.unsqueeze(1))
xs += avg_rep_list
ys += y.cpu().numpy().tolist()
data_loader = torch.utils.data.DataLoader(
dataset=Dataset(xs, ys),
batch_size=batch_size,
shuffle=shuffle,
collate_fn=cached_collate_fn)
return data_loader
def get_idx2class(dataset_fp):
classes = set()
with open(dataset_fp) as f:
csv_reader = csv.reader(f, delimiter="\t")
for row in tqdm(csv_reader, ascii=True):
if row:
classes.add(row[0])
return sorted(classes)
def get_generic_dataset(dataset_fp, tokenizer, device,
idx2class=None, add_eos_token=False):
if not idx2class:
idx2class = get_idx2class(dataset_fp)
class2idx = {c: i for i, c in enumerate(idx2class)}
x = []
y = []
with open(dataset_fp) as f:
csv_reader = csv.reader(f, delimiter="\t")
for i, row in enumerate(tqdm(csv_reader, ascii=True)):
if row:
label = row[0]
text = row[1]
try:
seq = tokenizer.encode(text)
if (len(seq) < max_length_seq):
if add_eos_token:
seq = [50256] + seq
seq = torch.tensor(
seq,
device=device,
dtype=torch.long
)
else:
print(
"Line {} is longer than maximum length {}".format(
i, max_length_seq
))
continue
x.append(seq)
y.append(class2idx[label])
except:
print("Error tokenizing line {}, skipping it".format(i))
pass
return Dataset(x, y)
def train_discriminator(
dataset,
dataset_fp=None,
pretrained_model="gpt2-medium",
epochs=10,
learning_rate=0.0001,
weight_decay=0.0,
batch_size=64,
log_interval=10,
save_model=False,
cached=False,
no_cuda=False,
output_fp='.',
fp=None,
is_deep=False,
is_deeper=False,
use_xlnet=False,
unfreeze=False
):
device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu"
add_eos_token = pretrained_model.startswith("gpt2")
if save_model:
if not os.path.exists(output_fp):
os.makedirs(output_fp)
classifier_head_meta_fp = os.path.join(
output_fp, "{}_classifier_head_meta.json".format(dataset)
)
classifier_head_fp_pattern = os.path.join(
output_fp, "{}_classifier_head_epoch".format(dataset) + "_{}.pt"
)
print("Preprocessing {} dataset...".format(dataset))
start = time.time()
if dataset == "SST":
idx2class = ["positive", "negative", "very positive", "very negative",
"neutral"]
class2idx = {c: i for i, c in enumerate(idx2class)}
discriminator = Discriminator(
class_size=len(idx2class),
pretrained_model=pretrained_model,
cached_mode=cached,
device=device,
fp=fp,
is_deep=is_deep,
is_deeper=is_deeper,
use_xlnet=use_xlnet,
unfreeze=unfreeze
).to(device)
text = torchtext_data.Field()
label = torchtext_data.Field(sequential=False)
train_data, val_data, test_data = datasets.SST.splits(
text,
label,
fine_grained=True,
train_subtrees=True,
)
x = []
y = []
for i in trange(len(train_data), ascii=True):
seq = TreebankWordDetokenizer().detokenize(
vars(train_data[i])["text"]
)
seq = discriminator.tokenizer.encode(seq)
if add_eos_token:
seq = [50256] + seq
seq = torch.tensor(seq, device=device, dtype=torch.long)
x.append(seq)
y.append(class2idx[vars(train_data[i])["label"]])
train_dataset = Dataset(x, y)
test_x = []
test_y = []
for i in trange(len(test_data), ascii=True):
seq = TreebankWordDetokenizer().detokenize(
vars(test_data[i])["text"]
)
seq = discriminator.tokenizer.encode(seq)
if add_eos_token:
seq = [50256] + seq
seq = torch.tensor(seq, device=device, dtype=torch.long)
test_x.append(seq)
test_y.append(class2idx[vars(test_data[i])["label"]])
test_dataset = Dataset(test_x, test_y)
discriminator_meta = {
"class_size": len(idx2class),
"embed_size": discriminator.embed_size,
"pretrained_model": pretrained_model,
"class_vocab": class2idx,
"default_class": 2,
}
elif dataset == "5_PerSoothe":
if dataset_fp is None:
raise ValueError("When generic dataset is selected, "
"dataset_fp needs to be specified aswell.")
idx2class = ["soothes", "improve", "neutral", "trouble", "worsens"]
class2idx = {c: i for i, c in enumerate(idx2class)}
discriminator = Discriminator(
class_size=len(idx2class),
pretrained_model=pretrained_model,
cached_mode=cached,
device=device,
fp=fp,
is_deep=is_deep,
is_deeper=is_deeper,
use_xlnet=use_xlnet,
unfreeze=unfreeze
).to(device)
finetuning_data = load_dataset('csv', data_files=dataset_fp)
finetuning_data = finetuning_data["train"].train_test_split(test_size=0.1)
train_data = finetuning_data["train"]
val_data = finetuning_data["test"]
test_data = finetuning_data["test"]
x = []
y = []
for i in trange(len(train_data), ascii=True):
seq = train_data[i]["text"]
seq = discriminator.tokenizer.encode(seq)
if add_eos_token:
seq = [50256] + seq
seq = torch.tensor(seq, device=device, dtype=torch.long)
x.append(seq)
y.append(class2idx[train_data[i]["label"]])
train_dataset = Dataset(x, y)
test_x = []
test_y = []
for i in trange(len(test_data), ascii=True):
seq = test_data[i]["text"]
seq = discriminator.tokenizer.encode(seq)
if add_eos_token:
seq = [50256] + seq
seq = torch.tensor(seq, device=device, dtype=torch.long)
test_x.append(seq)
test_y.append(class2idx[test_data[i]["label"]])
test_dataset = Dataset(test_x, test_y)
discriminator_meta = {
"class_size": len(idx2class),
"embed_size": discriminator.embed_size,
"pretrained_model": pretrained_model,
"class_vocab": class2idx,
"default_class": 2,
}
elif dataset == "3_PerSoothe":
if dataset_fp is None:
raise ValueError("When generic dataset is selected, "
"dataset_fp needs to be specified aswell.")
idx2class = ["soothes", "neutral", "worsens"]
class2idx = {c: i for i, c in enumerate(idx2class)}
discriminator = Discriminator(
class_size=len(idx2class),
pretrained_model=pretrained_model,
cached_mode=cached,
device=device,
fp=fp,
is_deep=is_deep,
is_deeper=is_deeper,
use_xlnet=use_xlnet,
unfreeze=unfreeze
).to(device)
finetuning_data = load_dataset('csv', data_files=dataset_fp)
finetuning_data = finetuning_data["train"].train_test_split(test_size=0.1)
train_data = finetuning_data["train"]
val_data = finetuning_data["test"]
test_data = finetuning_data["test"]
x = []
y = []
for i in trange(len(train_data), ascii=True):
seq = train_data[i]["text"]
seq = discriminator.tokenizer.encode(seq)
if add_eos_token:
seq = [50256] + seq
seq = torch.tensor(seq, device="cpu", dtype=torch.long)
x.append(seq)
y.append(class2idx[train_data[i]["label"]])
train_dataset = Dataset(x, y)
test_x = []
test_y = []
for i in trange(len(test_data), ascii=True):
seq = test_data[i]["text"]
seq = discriminator.tokenizer.encode(seq)
if add_eos_token:
seq = [50256] + seq
seq = torch.tensor(seq, device="cpu", dtype=torch.long)
test_x.append(seq)
test_y.append(class2idx[test_data[i]["label"]])
test_dataset = Dataset(test_x, test_y)
discriminator_meta = {
"class_size": len(idx2class),
"embed_size": discriminator.embed_size,
"pretrained_model": pretrained_model,
"class_vocab": class2idx,
"default_class": 2,
}
elif dataset == "3_PerSoothe_min":
if dataset_fp is None:
raise ValueError("When generic dataset is selected, "
"dataset_fp needs to be specified aswell.")
idx2class = ["soothes", "neutral", "worsens"]
class2idx = {c: i for i, c in enumerate(idx2class)}
discriminator = Discriminator(
class_size=len(idx2class),
pretrained_model=pretrained_model,
cached_mode=cached,
device=device,
fp=fp,
is_deep=is_deep,
is_deeper=is_deeper,
use_xlnet=use_xlnet,
unfreeze=unfreeze
).to(device)
finetuning_data = load_dataset('csv', data_files=dataset_fp)
finetuning_data = finetuning_data["train"].train_test_split(test_size=0.001)
train_data = finetuning_data["train"]
val_data = finetuning_data["test"]
test_data = finetuning_data["test"]
x = []
y = []
for i in trange(len(train_data), ascii=True):
seq = train_data[i]["text"]
seq = discriminator.tokenizer.encode(seq)
if add_eos_token:
seq = [50256] + seq
seq = torch.tensor(seq, device="cpu", dtype=torch.long)
x.append(seq)
y.append(class2idx[train_data[i]["label"]])
train_dataset = Dataset(x, y)
test_x = []
test_y = []
for i in trange(len(test_data), ascii=True):
seq = test_data[i]["text"]
seq = discriminator.tokenizer.encode(seq)
if add_eos_token:
seq = [50256] + seq
seq = torch.tensor(seq, device="cpu", dtype=torch.long)
test_x.append(seq)
test_y.append(class2idx[test_data[i]["label"]])
test_dataset = Dataset(test_x, test_y)
discriminator_meta = {
"class_size": len(idx2class),
"embed_size": discriminator.embed_size,
"pretrained_model": pretrained_model,
"class_vocab": class2idx,
"default_class": 2,
}
elif dataset == "2_PerSoothe":
if dataset_fp is None:
raise ValueError("When generic dataset is selected, "
"dataset_fp needs to be specified aswell.")
idx2class = ["soothes", "neutral"]
class2idx = {c: i for i, c in enumerate(idx2class)}
discriminator = Discriminator(
class_size=len(idx2class),
pretrained_model=pretrained_model,
cached_mode=cached,
device=device,
fp=fp,
is_deep=is_deep,
is_deeper=is_deeper,
use_xlnet=use_xlnet,
unfreeze=unfreeze
).to(device)
finetuning_data = load_dataset('csv', data_files=dataset_fp)
finetuning_data = finetuning_data["train"].train_test_split(test_size=0.1)
train_data = finetuning_data["train"]
val_data = finetuning_data["test"]
test_data = finetuning_data["test"]
x = []
y = []
for i in trange(len(train_data), ascii=True):
seq = train_data[i]["text"]
seq = discriminator.tokenizer.encode(seq)
if add_eos_token:
seq = [50256] + seq
seq = torch.tensor(seq, device=device, dtype=torch.long)
x.append(seq)
y.append(class2idx[train_data[i]["label"]])
train_dataset = Dataset(x, y)
test_x = []
test_y = []
for i in trange(len(test_data), ascii=True):
seq = test_data[i]["text"]
seq = discriminator.tokenizer.encode(seq)
if add_eos_token:
seq = [50256] + seq
seq = torch.tensor(seq, device=device, dtype=torch.long)
test_x.append(seq)
test_y.append(class2idx[test_data[i]["label"]])
test_dataset = Dataset(test_x, test_y)
discriminator_meta = {
"class_size": len(idx2class),
"embed_size": discriminator.embed_size,
"pretrained_model": pretrained_model,
"class_vocab": class2idx,
"default_class": 2,
}
else: # if dataset == "generic":
# This assumes the input dataset is a TSV with the following structure:
# class \t text
if dataset_fp is None:
raise ValueError("When generic dataset is selected, "
"dataset_fp needs to be specified aswell.")
idx2class = get_idx2class(dataset_fp)
discriminator = Discriminator(
class_size=len(idx2class),
pretrained_model=pretrained_model,
cached_mode=cached,
device=device,
fp=fp,
is_deep=is_deep,
is_deeper=is_deeper,
use_xlnet=use_xlnet,
unfreeze=unfreeze
).to(device)
full_dataset = get_generic_dataset(
dataset_fp, discriminator.tokenizer, device,
idx2class=idx2class, add_eos_token=add_eos_token
)
train_size = int(0.9 * len(full_dataset))
test_size = len(full_dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(
full_dataset,
[train_size, test_size]
)
discriminator_meta = {
"class_size": len(idx2class),
"embed_size": discriminator.embed_size,
"pretrained_model": pretrained_model,
"class_vocab": {c: i for i, c in enumerate(idx2class)},
"default_class": 0,
}
end = time.time()
print("Preprocessed {} data points".format(
len(train_dataset) + len(test_dataset))
)
print("Data preprocessing took: {:.3f}s".format(end - start))
if cached:
print("Building representation cache...")
start = time.time()
train_loader = get_cached_data_loader(
train_dataset, batch_size, discriminator,
shuffle=True, device="cpu"
)
test_loader = get_cached_data_loader(
test_dataset, batch_size, discriminator, device="cpu"
)
end = time.time()
print("Building representation cache took: {:.3f}s".format(end - start))
else:
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
collate_fn=collate_fn)
if save_model:
with open(classifier_head_meta_fp, "w") as meta_file:
json.dump(discriminator_meta, meta_file)
optimizer = optim.Adam(discriminator.parameters(), lr=learning_rate, weight_decay=weight_decay)
test_losses = []
test_accuracies = []
for epoch in range(epochs):
start = time.time()
print("\nEpoch", epoch + 1)
train_epoch(
discriminator=discriminator,
data_loader=train_loader,
optimizer=optimizer,
epoch=epoch,
log_interval=log_interval,
device=device
)
test_loss, test_accuracy = evaluate_performance(
data_loader=test_loader,
discriminator=discriminator,
device=device
)
end = time.time()
print("Epoch took: {:.3f}s".format(end - start))
test_losses.append(test_loss)
test_accuracies.append(test_accuracy)
print("\nExample prediction")
predict(example_sentence, discriminator, idx2class,
cached=cached, device=device)
if save_model:
# torch.save(discriminator.state_dict(),
# "{}_discriminator_{}.pt".format(
# args.dataset, epoch + 1
# ))
torch.save(discriminator.get_classifier().state_dict(),
classifier_head_fp_pattern.format(epoch + 1))
if save_model and unfreeze:
torch.save(discriminator.encoder.state_dict(),
classifier_head_fp_pattern.format(0))
min_loss = float("inf")
min_loss_epoch = 0
max_acc = 0.0
max_acc_epoch = 0
print("Test performance per epoch")
print("epoch\tloss\tacc")
for e, (loss, acc) in enumerate(zip(test_losses, test_accuracies)):
print("{}\t{}\t{}".format(e + 1, loss, acc))
if loss < min_loss:
min_loss = loss
min_loss_epoch = e + 1
if acc > max_acc:
max_acc = acc
max_acc_epoch = e + 1
print("Min loss: {} - Epoch: {}".format(min_loss, min_loss_epoch))
print("Max acc: {} - Epoch: {}".format(max_acc, max_acc_epoch))
return discriminator, discriminator_meta
def load_classifier_head(weights_path, meta_path, device='cpu',is_deep=False,is_deeper=False):
with open(meta_path, 'r', encoding="utf8") as f:
meta_params = json.load(f)
classifier_head = ClassificationHead(
class_size=meta_params['class_size'],
embed_size=meta_params['embed_size'],
is_deep=is_deep,
is_deeper=is_deeper
).to(device)
classifier_head.load_state_dict(
torch.load(weights_path, map_location=device))
classifier_head.eval()
return classifier_head, meta_params
def load_discriminator(weights_path, meta_path, device='cpu',is_deep=False,is_deeper=False):
classifier_head, meta_param = load_classifier_head(
weights_path, meta_path, device, is_deep, is_deeper
)
discriminator = Discriminator(
pretrained_model=meta_param['pretrained_model'],
classifier_head=classifier_head,
cached_mode=False,
device=device
)
return discriminator, meta_param
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Train a discriminator on top of GPT-2 representations")
parser.add_argument("--dataset", type=str, default="SST",
choices=("SST", "generic", "5_PerSoothe", "3_PerSoothe", "3_PerSoothe_min", "2_PerSoothe"),
help="dataset to train the discriminator on."
"In case of generic, the dataset is expected"
"to be a TSBV file with structure: class \\t text")
parser.add_argument("--dataset_fp", type=str, default="",
help="File path of the dataset to use. "
"Needed only in case of generic datadset")
parser.add_argument("--pretrained_model", type=str, default="gpt2-medium",
help="Pretrained model to use as encoder")
parser.add_argument("--epochs", type=int, default=10, metavar="N",
help="Number of training epochs")
parser.add_argument("--learning_rate", type=float, default=0.0001,
help="Learnign rate")
parser.add_argument("--weight_decay", type=float, default=0.0,
help="Weight decay")
parser.add_argument("--batch_size", type=int, default=64, metavar="N",
help="input batch size for training (default: 64)")
parser.add_argument("--log_interval", type=int, default=10, metavar="N",
help="how many batches to wait before logging training status")
parser.add_argument("--save_model", action="store_true",
help="whether to save the model")
parser.add_argument("--cached", action="store_true",
help="whether to cache the input representations")
parser.add_argument("--no_cuda", action="store_true",
help="use to turn off cuda")
parser.add_argument("--output_fp", default=".",
help="path to save the output to")
parser.add_argument("--fp", type=str, default=None, help="pretrained discriminator")
parser.add_argument("--is_deep", action="store_true",
help="whether to use deep classifier")
parser.add_argument("--is_deeper", action="store_true",
help="whether to use deeper classifier")
parser.add_argument("--use_xlnet", action="store_true",
help="whether to use xlnet classifier")
parser.add_argument("--unfreeze", action="store_true",
help="whether to train encoder as well")
args = parser.parse_args()
train_discriminator(**(vars(args)))
|