File size: 15,659 Bytes
4d5aff4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#! /usr/bin/env python3
# coding=utf-8

import os
import sys
import argparse
from tqdm import trange

import torch
import torch.optim
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable

lab_root = os.path.join(os.path.abspath(os.path.dirname(__file__)), '..', '..')
sys.path.insert(1, lab_root)
from pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Tokenizer

from IPython import embed

def top_k_logits(logits, k, probs=False):
    """
    Masks everything but the k top entries as -infinity (1e10).
    Used to mask logits such that e^-infinity -> 0 won't contribute to the
    sum of the denominator.
    """
    if k == 0:
        return logits
    else:
        values = torch.topk(logits, k)[0]
        batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
        if probs:
            return torch.where(logits < batch_mins, torch.ones_like(logits) * 0.0, logits)
        return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10, logits)

def sample_sequence(model, length, start_token=None, batch_size=None, context=None, temperature=1,
                    top_k=0, device='cuda', sample=True, return_past=False):
    if start_token is None:
        assert context is not None, 'Specify exactly one of start_token and context!'
        context = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(0).repeat(batch_size, 1)
    else:
        assert context is None, 'Specify exactly one of start_token and context!'
        context = torch.full((batch_size, 1), start_token, device=device, dtype=torch.long)
    # context.requires_grad_()=True
    prev = context
    output = context
    past = None
    with torch.no_grad():
        for i in trange(length, ascii=True):
            logits, past = model(prev, past=past)
            logits = logits[:, -1, :] / temperature
            logits = top_k_logits(logits, k=top_k) # do nothing if k=0
            log_probs = F.softmax(logits, dim=-1)
            if sample:
                prev = torch.multinomial(log_probs, num_samples=1)
            else:
                _, prev = torch.topk(log_probs, k=1, dim=-1)
            # prev is the next character, past is something [2, 1, 16, x, 64] where x grows from 1 to length
            # embed()
            # print('sample sequence {}: prev shape {} past shape {}'.format(i,
            # list(prev[0].size()), list(past[0].size())))
            output = torch.cat((output, prev), dim=1)
            #print(output)
    if return_past:
        return output, past
    else:
        return output


def sample_from_hidden(model, length, hidden, context=None, past=None, temperature=1,
                       top_k=0, device='cuda', sample=True, noise_level=1e-1):
    output = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(0) if context else None
    with torch.no_grad():
        for i in trange(length, ascii=True):
            logits = model.forward_hidden(hidden)
            logits = logits[:, -1, :] / temperature
            logits = top_k_logits(logits, k=top_k) # do nothing if k=0
            log_probs = F.softmax(logits, dim=-1)
            if sample:
                prev = torch.multinomial(log_probs, num_samples=1)
            else:
                _, prev = torch.topk(log_probs, k=1, dim=-1)
            # prev is the next character, past is something [2, 1, 16, x, 64] where x grows from 1 to length
            #embed()
            #print('sample sequence {}: prev shape {} past shape {}'.format(i, list(prev[0].size()), list(past[0].size())))
            output = prev if output is None else torch.cat((output, prev), dim=1) # update output
            if i == 0:
                _, past = model(output, past=None)      # update past. Take the whole input context
            else:
                _, past = model(prev, past=past)        # update past. Take one next token
            hidden = model.hidden_states            # update hidden
            #print('output', output)
            #print('hidden', hidden)
            
            # do something with the hidden
            hidden = modify_hidden(hidden, noise_level)
    return output

def modify_hidden(input_tensor, noise_level=1e-1):
    # input_tensor shape: (1, 1, length)
    length = input_tensor.shape[-1]
    ret = input_tensor + torch.rand(length).cuda() * noise_level
    return ret

def compute_log_likelihood(model, phrase, tokenizer, device):
    token_ids = tokenizer.encode(phrase)
    batch_size = 1
    context = torch.tensor(token_ids, device=device, dtype=torch.long).unsqueeze(0).repeat(batch_size, 1)
    print("Computing LL of phrase \"{}\"".format(phrase))
    print("After encoding, number of tokens {}".format(len(token_ids)))
    with torch.no_grad():
        logits, past = model(context, past=None)

    _idxs = range(len(token_ids) - 1)
    token_ids = token_ids[1:]
    logits = logits[0, :-1]

    probs = F.softmax(logits, dim=-1)
    likelihoods = probs[_idxs, token_ids]
    assert len(list(likelihoods.shape)) == 1

    log_likelihoods = torch.log(likelihoods)
    ll_list = [ls.item() for ls in log_likelihoods]
   
    for token, llh in zip(token_ids, log_likelihoods):
        print("LL of token   {} (\'{}\')  ==>  {:.4f}".format(token, tokenizer.decode([token]), llh))

    print("LL of the phrase (sum of the above): {}".format(np.sum(ll_list)))
    return np.sum(ll_list)


def get_embedding_grad(model, enc, context=None, target=40, device='cuda', ll_only=False, opt_embed=False):
    assert context is not None, 'Input text is needed'
    # context = Variable(torch.tensor(context, device=device, dtype=torch.float),
    #                    requires_grad=True).unsqueeze(0)#.repeat(1, 1)
    
    context = torch.tensor(context, device=device, dtype=torch.float).unsqueeze(0)
    
    model.zero_grad()
    logits, past = model(context, past=None)
    
    # make sure it is the same as above
    # logits_1, past_1 = model.forward_embed(model.transformer.i_embeds, past=None)

    logits = logits[:, -1, :]
    log_probs = F.softmax(logits, dim=-1)

    if len(target) > 1:
        nll = sum([-torch.log(log_probs[:, tar]) for tar in target])
    else:
        nll = - torch.log(log_probs[:, target])

    
    with torch.no_grad():
        # logits = top_k_logits(logits, k=1) # do nothing if k=0
        log_probs = F.softmax(logits, dim=-1)
        top1, top1ind = torch.topk(log_probs, k=1, dim=-1)
    
        print('LL of target : {}'.format(-nll.data.squeeze().cpu().numpy()))
        print('LL of top 1 : {}'.format(torch.log(top1).data.squeeze().cpu().numpy()))

    if ll_only:
        return
   
    if opt_embed:  # optimizin in embedding space
        orig_embed = model.transformer.i_embeds.clone()
        embed_vars = Variable(model.transformer.i_embeds, requires_grad=True)
        # optimizer = torch.optim.SGD([embed_vars], lr=0.01, momentum=0.9)
        optimizer = torch.optim.Adam([embed_vars], lr=0.01)
        optimizer.zero_grad()
        
        for ss in range(50):
            # nll.backward(retain_graph=True)
            nll.backward()
            optimizer.step()
            
            logits, past = model.forward_embed(embed_vars, past=None)
            logits = logits[:, -1, :]
            log_probs = F.softmax(logits, dim=-1)

            if len(target) > 1:
                nll = sum([-torch.log(log_probs[:, tar]) for tar in target])
            else:
                nll = - torch.log(log_probs[:, target])
            
            print('LL of target (step {}): {}'.format(ss, -nll.data.squeeze().cpu().numpy()))
            # print('Sanity check: embed_vars sum: {}'.format(embed_vars.sum().cpu().detach().numpy()))

    
        # searching in token space
        output_ids = torch.empty_like(context.long())
        with torch.no_grad():
            all_embeds = model.transformer.wte.weight   # [50257, 1024]
            embed_vars_unbind = torch.unbind(embed_vars, dim=1)
            orig_embed_unbind = torch.unbind(orig_embed, dim=1)

            cc = 0
            for ie_new, ie_orig, orig_id in zip(embed_vars_unbind, orig_embed_unbind, context.squeeze(0)):
                new_id = (all_embeds - ie_new).abs().sum(1).argmin()

                print('emb {}: {} (`{}`) to {} (`{}`)'.format(cc, orig_id.tolist(), enc.decode([orig_id.tolist()]),
                        new_id.tolist(), enc.decode([new_id.tolist()])))

                output_ids[0, cc] = new_id
                cc += 1
            
        output_ids = torch.cat((context.long(), output_ids), dim=1)
    return output_ids 



    ## searching in token space
    # model.transformer.i_embeds.retain_grad()
    # nll.backward()
    # step = 0.01
    #
    ## with torch.no_grad():
    # if True:
    #    input_grads = model.transformer.i_embeds.grad   # [batch, length, 1024]
    #    #input_grads = input_grads.squeeze(0)            # [length, 1024]
    #    input_embeds = model.transformer.i_embeds       # [batch, length, 1024]
    #    input_embeds_unbind = torch.unbind(input_embeds, dim=1)
    #    all_embeds = model.transformer.wte.weight   # [50257, 1024]
    #    
    #    opts = [torch.optim.Adam([Variable(ie, requires_grad=True)], lr=0.01) for ie in input_embeds_unbind]
    #    

    #    ## HERE
    #    # for ss in range(50):
    #    #    input_embeds.data.sub_(step * input_grads.data)
    #    #    #input_embeds.data.add_(step * input_grads.data)
    #    #    
    #    #    logits, past = model.forward_embed(input_embeds, past=None)
    #    #    logits = logits[:, -1, :]
    #    #    log_probs = F.softmax(logits, dim=-1)

    #    #    if len(target) > 1:
    #    #        nll = sum([-torch.log(log_probs[:, tar]) for tar in target])
    #    #    else:
    #    #        nll = - torch.log(log_probs[:, target])
    #    #    
    #    #    print('LL of target (step {}): {}'.format(ss, -nll.data.squeeze().cpu().numpy()))
    #    #    
    #    # embed()

    #    search_order = input_grads.sum(-1).squeeze().abs().argsort(descending=True)

    #    output_ids = context.long()
    #    cc = 0
    #    #n_tokens_to_change = 1 
    #    for order, orig_id in zip(search_order,  context.squeeze(0)[search_order]):
    #        embed()
    #        
    #        ie = input_embeds_unbind[order]

    #        orig_id = orig_id.long()
    #        opt = opts[order]
    #        opt.zero_grad()

    #        new_id = abs(all_embeds - ie).sum(1).argmin().data # new_id == orig_id 

    #        #if cc < n_tokens_to_change:
    #        #    while new_id == orig_id: # 
    #                #ie.data.sub_(step * ig.data)
    #                #ie.data.add_(step * ig.data)
    #        for opt_step in range(50):
    #                opt.step()
    #                new_id = abs(all_embeds - ie).sum(1).argmin().data

    #        print('emb {}: {} (`{}`) to {} (`{}`)'.format(order, orig_id.tolist(), enc.decode([orig_id.tolist()]),
    #                new_id.tolist(), enc.decode([new_id.tolist()])))

    #        output_ids[0, order] = new_id

    #        #output_ids = torch.cat((output_ids, new_id.reshape(1,1)), dim=1)
    #        cc += 1

    #    output_ids = torch.cat((context.long(), output_ids), dim=1)
    # print(context.grad)
    return output_ids 

def run_model():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_path', '-M', type=str, default='gpt-2_pt_models/774M/', 
                        help='pretrained model name or path to local checkpoint')
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--nsamples", type=int, default=1)
    parser.add_argument("--batch_size", type=int, default=-1)
    parser.add_argument("--length", type=int, default=-1)
    parser.add_argument("--temperature", type=float, default=1.0)
    parser.add_argument("--top_k", type=int, default=0)
    parser.add_argument('--unconditional', action='store_true', help='If true, unconditional generation.')
    parser.add_argument('--nocuda', action='store_true', help='no cuda')
    parser.add_argument('--opt_ll', action='store_true', help='nll optimize')
    parser.add_argument('--get_ll', action='store_true', help='compute log likelihood of sentence')
    parser.add_argument('--hidden_playground', action='store_true', help='play around in the hidden representation')
    parser.add_argument("--noise_level", type=float, default=1e-1)
    parser.add_argument("--cond-text", type=str, default='', help='Prefix texts to condition on')
    parser.add_argument('--output', type=str, default=os.environ.get('GIT_RESULTS_MANAGER_DIR', None), help='output directory')
    args = parser.parse_args()
    print(args)

    if args.batch_size == -1:
        args.batch_size = 1
    assert args.nsamples % args.batch_size == 0

    np.random.seed(args.seed)
    torch.random.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if args.nocuda:
        device = torch.device("cpu") 

    print('device is {}'.format(device))

    enc = GPT2Tokenizer.from_pretrained(args.model_path)
    model = GPT2LMHeadModel.from_pretrained(args.model_path)
    model.to(device)
    model.eval()

    
    if args.length == -1:
        args.length = model.config.n_ctx // 2
    elif args.length > model.config.n_ctx:
        raise ValueError("Can't get samples longer than window size: %s" % model.config.n_ctx)

    #while True:
    generated = 0
    for _ in range(10):
        context_tokens = []
        if not args.unconditional:
            #raw_text = input("Model prompt >>> ")
            raw_text = args.cond_text
            while not raw_text:
                print('Prompt should not be empty!')
                raw_text = input("Model prompt >>> ")
            context_tokens = enc.encode(raw_text)
            for _ in range(args.nsamples // args.batch_size):
                out = sample_sequence(
                    model=model, length=args.length,
                    context=context_tokens,
                    start_token=None,
                    batch_size=args.batch_size,
                    temperature=args.temperature, top_k=args.top_k, device=device
                )
                #out = out[:, len(context_tokens):].tolist()
                out = out[:, 0:].tolist()
                for i in range(args.batch_size):
                    generated += 1
                    text = enc.decode(out[i])
                    print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
                    print(text)
                    if args.output:
                        filepath = os.path.join(args.output, "generated_{}.txt".format(generated))
                        with open(filepath, "w") as f:
                            f.write(text)
                    
           # print("=" * 80)
        if args.unconditional:
          generated = 0
          for _ in range(args.nsamples // args.batch_size):
              out = sample_sequence(
                  model=model, length=args.length,
                  context=None,
                  start_token=enc.encoder['<|endoftext|>'],
                  batch_size=args.batch_size,
                  temperature=args.temperature, top_k=args.top_k, device=device
              )
              out = out[:,1:].tolist()
              for i in range(args.batch_size):
                  generated += 1
                  text = enc.decode(out[i])
                  print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
                  print(text)
          #print("=" * 80)
          if args.unconditional:
              break


if __name__ == '__main__':
    run_model()