File size: 13,439 Bytes
4d5aff4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#! /usr/bin/env python3
# coding=utf-8

# This code is licensed under a non-commercial license.

import os
import sys
import argparse
from tqdm import trange
from torchtext import data as torchtext_data
from torchtext import datasets

import torch
import torch.utils.data as data

from torchtext.vocab import Vectors, GloVe, CharNGram, FastText
from nltk.tokenize.treebank import TreebankWordDetokenizer
import torch
import torch.optim
import torch.nn.functional as F
import numpy as np
from IPython import embed
from operator import add
from run_gpt2 import top_k_logits
from style_utils import to_var
import copy
import pickle
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split
import torch.optim as optim

torch.manual_seed(0)
np.random.seed(0)

lab_root = os.path.join(os.path.abspath(os.path.dirname(__file__)), '..', '..')
sys.path.insert(1, lab_root)

from pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Tokenizer
from torch.autograd import Variable

tokenizer = GPT2Tokenizer.from_pretrained('gpt-2_pt_models/345M/')

model = GPT2LMHeadModel.from_pretrained('gpt-2_pt_models/345M/')


class ClassificationHead(torch.nn.Module):
    """ Language Model Head for the transformer """

    def __init__(self, class_size=5, embed_size=2048):
        super(ClassificationHead, self).__init__()
        self.class_size = class_size
        self.embed_size = embed_size
        # self.mlp1 = torch.nn.Linear(embed_size, embed_size)
        # self.mlp2 = (torch.nn.Linear(embed_size, class_size))
        self.mlp = (torch.nn.Linear(embed_size, class_size))

    def forward(self, hidden_state):
        # Truncated Language modeling logits (we remove the last token)
        # h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
        # lm_logits = F.relu(self.mlp1(hidden_state))
        # lm_logits = self.mlp2(lm_logits)
        lm_logits = self.mlp(hidden_state)
        return lm_logits


class Discriminator(torch.nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.classifierhead = ClassificationHead()
        self.model = model
        self.spltoken = Variable(torch.randn(1, 1, 1024).type(torch.FloatTensor), requires_grad=True)
        self.spltoken = self.spltoken.repeat(10, 1, 1)
        self.spltoken = self.spltoken.cuda()

    def train(self):
        for param in self.model.parameters():
            param.requires_grad = False
        pass

    def forward(self, x):
        x = model.forward_embed(x)
        x = torch.cat((x, self.spltoken), dim=1)
        _, x = model.forward_transformer_embed(x, add_one=True)
        x = self.classifierhead(x[-1][:, -1, :])
        x = F.log_softmax(x, dim=-1)
        return x


class Discriminator2(torch.nn.Module):
    def __init__(self, class_size=5, embed_size=1024):
        super(Discriminator2, self).__init__()
        self.classifierhead = ClassificationHead(class_size=class_size, embed_size=embed_size)
        self.model = model
        self.embed_size = embed_size

    def get_classifier(self):
        return self.classifierhead

    def train_custom(self):
        for param in self.model.parameters():
            param.requires_grad = False
        pass
        self.classifierhead.train()

    def forward(self, x):
        x = model.forward_embed(x)
        hidden, x = model.forward_transformer_embed(x)
        x = torch.sum(hidden, dim=1)
        x = self.classifierhead(x)
        x = F.log_softmax(x, dim=-1)
        return x

class Discriminator2mean(torch.nn.Module):
    def __init__(self, class_size=5, embed_size=1024):
        super(Discriminator2mean, self).__init__()
        self.classifierhead = ClassificationHead(class_size=class_size, embed_size=embed_size)
        self.model = model
        self.embed_size = embed_size

    def get_classifier(self):
        return self.classifierhead

    def train_custom(self):
        for param in self.model.parameters():
            param.requires_grad = False
        pass
        self.classifierhead.train()

    def forward(self, x):
        mask_src = 1 - x.eq(0).unsqueeze(1).type(torch.FloatTensor).cuda().detach()
        mask_src = mask_src.repeat(1, self.embed_size, 1)
        x = model.forward_embed(x)
        hidden, x = model.forward_transformer_embed(x)
        #  Hidden has shape batch_size x length x embed-dim

        hidden = hidden.permute(0, 2, 1)
        _, _, batch_length = hidden.shape
        hidden = hidden * mask_src  # / torch.sum(mask_src, dim=-1).unsqueeze(2).repeat(1, 1, batch_length)
        #
        hidden = hidden.permute(0, 2, 1)
        x = torch.sum(hidden, dim=1)/(torch.sum(mask_src, dim=-1).detach() + 1e-10)
        x = self.classifierhead(x)
        x = F.log_softmax(x, dim=-1)
        return x

class Dataset(data.Dataset):
    def __init__(self, X, y):
        """Reads source and target sequences from txt files."""
        self.X = X
        self.y = y

    def __len__(self):
        return len(self.X)

    def __getitem__(self, index):
        """Returns one data pair (source and target)."""
        d = {}
        d['X'] = self.X[index]
        d['y'] = self.y[index]
        return d


def collate_fn(data):
    def merge(sequences):
        lengths = [len(seq) for seq in sequences]

        padded_seqs = torch.zeros(len(sequences), max(lengths)).long().cuda()  # padding index 0
        for i, seq in enumerate(sequences):
            end = lengths[i]
            padded_seqs[i, :end] = seq[:end]
        return padded_seqs, lengths

    data.sort(key=lambda x: len(x["X"]), reverse=True)  # sort by source seq

    item_info = {}
    for key in data[0].keys():
        item_info[key] = [d[key] for d in data]

    # input
    x_batch, _ = merge(item_info['X'])
    y_batch = item_info['y']

    return x_batch, torch.tensor(y_batch, device='cuda', dtype=torch.long)


def train_epoch(data_loader, discriminator, device='cuda', args=None, epoch=1):
    optimizer = optim.Adam(discriminator.parameters(), lr=0.0001)
    discriminator.train_custom()

    for batch_idx, (data, target) in enumerate(data_loader):
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()

        output = discriminator(data)
        loss = F.nll_loss(output, target)
        loss.backward(retain_graph=True)
        optimizer.step()

        if batch_idx % args.log_interval == 0:
            print('Relu Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(data_loader.dataset),
                       100. * batch_idx / len(data_loader), loss.item()))


def test_epoch(data_loader, discriminator, device='cuda', args=None):
    discriminator.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in data_loader:
            data, target = data.to(device), target.to(device)
            output = discriminator(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()  # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(data_loader.dataset)

    print('\nRelu Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(data_loader.dataset),
        100. * correct / len(data_loader.dataset)))


def main():
    parser = argparse.ArgumentParser(description='Train a discriminator on top of GPT-2 representations')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='Number of training epochs')
    parser.add_argument('--save-model', action='store_true', help='whether to save the model')
    parser.add_argument('--dataset-label', type=str, default='SST',choices=('SST', 'clickbait', 'toxic'))
    args = parser.parse_args()

    batch_size = args.batch_size
    device = 'cuda'
    # load sst
    if args.dataset_label == 'SST':
        text = torchtext_data.Field()
        label = torchtext_data.Field(sequential=False)
        train_data, val_data, test_data = datasets.SST.splits(text, label, fine_grained=True, train_subtrees=True,
                                                              # filter_pred=lambda ex: ex.label != 'neutral'
                                                              )
        x = []
        y = []
        d = {"positive": 0, "negative": 1, "very positive": 2, "very negative": 3, "neutral": 4}

        for i in range(len(train_data)):
            seq = TreebankWordDetokenizer().detokenize(vars(train_data[i])["text"])
            seq = tokenizer.encode(seq)
            seq = torch.tensor(seq, device=device, dtype=torch.long)
            x.append(seq)
            y.append(d[vars(train_data[i])["label"]])

        dataset = Dataset(x, y)

        test_x = []
        test_y = []
        for i in range(len(test_data)):
            seq = TreebankWordDetokenizer().detokenize(vars(test_data[i])["text"])
            seq = tokenizer.encode(seq)
            seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
            test_x.append(seq)
            test_y.append(d[vars(test_data[i])["label"]])
        test_dataset = Dataset(test_x, test_y)
        discriminator = Discriminator2mean(class_size=5).to(device)

    elif args.dataset_label == 'clickbait':
        # data = pickle.load(open("/home/gilocal/lab/exp/language/datasets/clickbait/clickbait.p", "r"))
        with open("datasets/clickbait/clickbait_train_prefix.txt") as f:
            data = []
            for d in f:
                try:
                    data.append(eval(d))
                except:
                    continue
        x = []
        y = []
        for d in data:
            try:
                # seq = tokenizer.encode("Apple's iOS 9 'App thinning' feature will give your phone's storage a boost")
                try:
                    seq = tokenizer.encode(d["text"])
                except:
                    continue
                seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
                x.append(seq)
                y.append(d['label'])
            except:
                pass

        dataset = Dataset(x, y)
        train_size = int(0.9 * len(dataset))
        test_size = len(dataset) - train_size
        dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])
        discriminator = Discriminator2mean(class_size=2).to(device)

    elif args.dataset_label == 'toxic':
        # data = pickle.load(open("/home/gilocal/lab/exp/language/datasets/clickbait/clickbait.p", "r"))
        with open("datasets/toxic/toxic_train.txt") as f:
            data = []
            for d in f:
                data.append(eval(d))

        x = []
        y = []
        for d in data:
            try:
                # seq = tokenizer.encode("Apple's iOS 9 'App thinning' feature will give your phone's storage a boost")
                seq = tokenizer.encode(d["text"])

                device = 'cuda'
                if(len(seq)<100):
                    seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
                else:
                    continue
                x.append(seq)
                y.append(int(np.sum(d['label'])>0))
            except:
                pass

        dataset = Dataset(x, y)
        print(dataset)
        print(len(dataset))
        train_size = int(0.9 * len(dataset))
        test_size = len(dataset) - train_size
        dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])
        discriminator = Discriminator2mean(class_size=2).to(device)

    data_loader = torch.utils.data.DataLoader(dataset=dataset,
                                              batch_size=batch_size,
                                              shuffle=True, collate_fn=collate_fn)
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                              batch_size=batch_size, collate_fn=collate_fn)

    for epoch in range(args.epochs):
        train_epoch(discriminator=discriminator, data_loader=data_loader, args=args, device=device, epoch=epoch)
        test_epoch(data_loader=test_loader, discriminator=discriminator, args=args)
        seq = tokenizer.encode("This is incredible! I love it, this is the best chicken I have ever had.")
        seq = torch.tensor([seq], device=device, dtype=torch.long)
        print(discriminator(seq))

        if (args.save_model):
            torch.save(discriminator.state_dict(),
                       "discrim_models/{}_mean_lin_discriminator_{}.pt".format(args.dataset_label, epoch))
            torch.save(discriminator.get_classifier().state_dict(),
                       "discrim_models/{}_classifierhead.pt".format(args.dataset_label))

    seq = tokenizer.encode("This is incredible! I love it, this is the best chicken I have ever had.")
    seq = torch.tensor([seq], device=device, dtype=torch.long)
    print(discriminator(seq))


if __name__ == '__main__':
    main()