|
import torch |
|
from transformers import GPT2ForSequenceClassification |
|
|
|
class ClassificationHead(torch.nn.Module): |
|
"""Classification Head for transformer encoders""" |
|
|
|
def __init__(self, class_size, embed_size, is_deep=False, use_xlnet=False, is_deeper=False): |
|
super(ClassificationHead, self).__init__() |
|
self.class_size = class_size |
|
self.embed_size = embed_size |
|
self.is_deep = is_deep |
|
self.is_deeper = is_deeper |
|
self.use_xlnet = use_xlnet |
|
if is_deep: |
|
self.mlp1 = torch.nn.Linear(embed_size, 128) |
|
self.mlp2 = torch.nn.Linear(128, 64) |
|
self.mlp3 = torch.nn.Linear(64, class_size) |
|
elif is_deeper: |
|
self.mlp1 = torch.nn.Linear(embed_size, 512) |
|
self.mlp2 = torch.nn.Linear(512, 256) |
|
self.mlp3 = torch.nn.Linear(256, 128) |
|
self.mlp4 = torch.nn.Linear(128, 64) |
|
self.mlp5 = torch.nn.Linear(64, class_size) |
|
elif use_xlnet: |
|
self.gpt = GPT2ForSequenceClassification.from_pretrained("microsoft/DialogRPT-updown") |
|
self.mlp = torch.nn.Linear(8, class_size, bias=True) |
|
else: |
|
self.mlp = torch.nn.Linear(embed_size, class_size) |
|
|
|
def forward(self, hidden_state, inputs_embeds=None): |
|
if self.is_deep: |
|
hidden_state = torch.nn.functional.relu(self.mlp1(hidden_state)) |
|
hidden_state = torch.nn.functional.relu(self.mlp2(hidden_state)) |
|
logits = self.mlp3(hidden_state) |
|
elif self.is_deeper: |
|
hidden_state = torch.nn.functional.relu(self.mlp1(hidden_state)) |
|
hidden_state = torch.nn.functional.relu(self.mlp2(hidden_state)) |
|
hidden_state = torch.nn.functional.relu(self.mlp3(hidden_state)) |
|
hidden_state = torch.nn.functional.relu(self.mlp4(hidden_state)) |
|
logits = self.mlp5(hidden_state) |
|
elif self.use_xlnet: |
|
hidden_state, _ = self.gpt(input_ids=hidden_state, inputs_embeds=inputs_embeds) |
|
logits = self.mlp(hidden_state) |
|
else: |
|
logits = self.mlp(hidden_state) |
|
return logits |
|
|