|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import csv |
|
import json |
|
import math |
|
import numpy as np |
|
import os |
|
import time |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.optim |
|
import torch.optim as optim |
|
import torch.utils.data as data |
|
from nltk.tokenize.treebank import TreebankWordDetokenizer |
|
from torchtext import data as torchtext_data |
|
from torchtext import datasets |
|
from tqdm import tqdm, trange |
|
from transformers import BertTokenizer, BertModel |
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel |
|
from transformers import GPT2ForSequenceClassification |
|
from datasets import load_dataset |
|
|
|
from pplm_classification_head import ClassificationHead |
|
|
|
torch.manual_seed(0) |
|
np.random.seed(0) |
|
EPSILON = 1e-10 |
|
example_sentence = "This is incredible! I love it, this is the best chicken I have ever had." |
|
max_length_seq = 100 |
|
|
|
|
|
class Discriminator(torch.nn.Module): |
|
"""Transformer encoder followed by a Classification Head""" |
|
|
|
def __init__( |
|
self, |
|
class_size=None, |
|
pretrained_model="gpt2-medium", |
|
classifier_head=None, |
|
cached_mode=False, |
|
device='cpu', |
|
fp=None, |
|
is_deep=False, |
|
is_deeper=False, |
|
use_xlnet=False, |
|
output_hidden_states=False, |
|
unfreeze=False |
|
): |
|
super(Discriminator, self).__init__() |
|
self.use_xlnet = use_xlnet |
|
if pretrained_model.startswith("gpt2") or pretrained_model.startswith("microsoft/DialoGPT"): |
|
self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model) |
|
self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model, output_hidden_states=output_hidden_states) |
|
self.embed_size = self.encoder.transformer.config.hidden_size |
|
elif pretrained_model.startswith("bert"): |
|
self.tokenizer = BertTokenizer.from_pretrained(pretrained_model) |
|
self.encoder = BertModel.from_pretrained(pretrained_model) |
|
self.embed_size = self.encoder.config.hidden_size |
|
else: |
|
try: |
|
self.tokenizer = GPT2Tokenizer.from_pretrained("microsoft/DialoGPT-large") |
|
self.encoder = GPT2LMHeadModel.from_pretrained("microsoft/DialoGPT-large", output_hidden_states=output_hidden_states) |
|
self.encoder.load_state_dict(torch.load(pretrained_model)) |
|
self.embed_size = self.encoder.transformer.config.hidden_size |
|
except: |
|
raise ValueError( |
|
"{} model not yet supported".format(pretrained_model) |
|
) |
|
if classifier_head: |
|
self.classifier_head = classifier_head |
|
else: |
|
if not class_size: |
|
raise ValueError("must specify class_size") |
|
self.classifier_head = ClassificationHead( |
|
class_size=class_size, |
|
embed_size=self.embed_size, |
|
is_deep=is_deep, |
|
is_deeper=is_deeper, |
|
use_xlnet=use_xlnet |
|
) |
|
if fp != None: |
|
self.classifier_head.load_state_dict( |
|
torch.load(fp, map_location=device)) |
|
self.cached_mode = cached_mode |
|
self.device = device |
|
self.unfreeze = unfreeze |
|
|
|
def get_classifier(self): |
|
return self.classifier_head |
|
|
|
def train_custom(self): |
|
for param in self.encoder.parameters(): |
|
param.requires_grad = self.unfreeze |
|
self.classifier_head.train() |
|
|
|
def avg_representation(self, x): |
|
mask = x.ne(0).unsqueeze(2).repeat( |
|
1, 1, self.embed_size |
|
).float().to(self.device).detach() |
|
if hasattr(self.encoder, 'transformer'): |
|
|
|
hidden, _ = self.encoder.transformer(x) |
|
else: |
|
|
|
hidden, _ = self.encoder(x) |
|
masked_hidden = hidden * mask |
|
avg_hidden = torch.sum(masked_hidden, dim=1) / ( |
|
torch.sum(mask, dim=1).detach() + EPSILON |
|
) |
|
return avg_hidden |
|
|
|
def forward(self, x): |
|
if self.cached_mode: |
|
avg_hidden = x.to(self.device) |
|
else: |
|
avg_hidden = self.avg_representation(x.to(self.device)) |
|
if self.use_xlnet: |
|
logits = self.classifier_head(None, inputs_embeds=avg_hidden.unsqueeze(dim=2)) |
|
else: |
|
logits = self.classifier_head(avg_hidden) |
|
probs = F.log_softmax(logits, dim=-1) |
|
avg_hidden, logits = avg_hidden.to("cpu"), logits.to("cpu") |
|
return probs |
|
|
|
def predict(self, input_sentence): |
|
input_t = self.tokenizer.encode(input_sentence) |
|
input_t = torch.tensor([input_t], dtype=torch.long, device=self.device) |
|
if self.cached_mode: |
|
input_t = self.avg_representation(input_t) |
|
|
|
log_probs = self(input_t).data.cpu().numpy().flatten().tolist() |
|
prob = [math.exp(log_prob) for log_prob in log_probs] |
|
return prob |
|
|
|
|
|
class Dataset(data.Dataset): |
|
def __init__(self, X, y): |
|
"""Reads source and target sequences from txt files.""" |
|
self.X = X |
|
self.y = y |
|
|
|
def __len__(self): |
|
return len(self.X) |
|
|
|
def __getitem__(self, index): |
|
"""Returns one data pair (source and target).""" |
|
data = {} |
|
data["X"] = self.X[index] |
|
data["y"] = self.y[index] |
|
return data |
|
|
|
|
|
def collate_fn(data): |
|
def pad_sequences(sequences): |
|
lengths = [len(seq) for seq in sequences] |
|
|
|
padded_sequences = torch.zeros( |
|
len(sequences), |
|
min(max(lengths), 512) |
|
).long() |
|
|
|
|
|
errors = [] |
|
for i, seq in enumerate(sequences): |
|
end = min(lengths[i], 512) |
|
padded_sequences[i, :end] = seq[-end:] |
|
return padded_sequences, lengths |
|
|
|
item_info = {} |
|
for key in data[0].keys(): |
|
item_info[key] = [d[key] for d in data] |
|
|
|
x_batch, _ = pad_sequences(item_info["X"]) |
|
y_batch = torch.tensor(item_info["y"], dtype=torch.long) |
|
|
|
return x_batch, y_batch |
|
|
|
|
|
def cached_collate_fn(data): |
|
item_info = {} |
|
for key in data[0].keys(): |
|
item_info[key] = [d[key] for d in data] |
|
|
|
x_batch = torch.cat(item_info["X"], 0) |
|
y_batch = torch.tensor(item_info["y"], dtype=torch.long) |
|
|
|
return x_batch, y_batch |
|
|
|
|
|
def train_epoch(data_loader, discriminator, optimizer, |
|
epoch=0, log_interval=10, device='cpu'): |
|
samples_so_far = 0 |
|
discriminator.train_custom() |
|
for batch_idx, (input_t, target_t) in enumerate(data_loader): |
|
input_t, target_t = input_t.to(device), target_t.to(device) |
|
samples_so_far += len(input_t) |
|
if input_t.size()[-1] > 225: continue |
|
optimizer.zero_grad() |
|
|
|
output_t = discriminator(input_t) |
|
loss = F.nll_loss(output_t, target_t) |
|
loss.backward(retain_graph=True) |
|
optimizer.step() |
|
|
|
if batch_idx % log_interval == 0: |
|
print( |
|
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( |
|
epoch + 1, |
|
samples_so_far, len(data_loader.dataset), |
|
100 * samples_so_far / len(data_loader.dataset), loss.item() |
|
) |
|
) |
|
input_t, target_t = input_t.to("cpu"), target_t.to("cpu") |
|
output_t, loss = output_t.to("cpu"), loss.to("cpu") |
|
del loss |
|
del output_t |
|
del input_t |
|
del target_t |
|
|
|
|
|
def evaluate_performance(data_loader, discriminator, device='cpu', check=False, classes=3): |
|
discriminator.eval() |
|
test_loss = 0 |
|
correct_count = 0 |
|
hist_len = {} |
|
token_len = {} |
|
label_len = {} |
|
hist_cor = {} |
|
token_cor = {} |
|
label_cor = {} |
|
comp_mat = [[0 for i in range(classes)] for j in range(classes)] |
|
with torch.no_grad(): |
|
for batch_idx, (input_t, target_t) in enumerate(data_loader): |
|
try: |
|
input_t, target_t = input_t.to(device), target_t.to(device) |
|
output_t = discriminator(input_t) |
|
|
|
test_loss += F.nll_loss(output_t, target_t, reduction="sum").item() |
|
|
|
pred_t = output_t.argmax(dim=1, keepdim=True) |
|
res = torch.squeeze(pred_t.eq(target_t.view_as(pred_t))) |
|
for i, correct, in enumerate(res): |
|
comp_mat[pred_t[i].item()][target_t[i].item()] += 1 |
|
if not correct: |
|
tmp = input_t[i].tolist() |
|
curCount = tmp.count(50256) |
|
hist_len[curCount] = hist_len.get(curCount, 0) + 1 |
|
token_len[len(tmp)-tmp.count(0)] = token_len.get(len(tmp)-tmp.count(0), 0) + 1 |
|
label_len[target_t[i].item()] = label_len.get(target_t[i].item(), 0) + 1 |
|
else: |
|
correct_count += 1 |
|
tmp = input_t[i].tolist() |
|
curCount = tmp.count(50256) |
|
hist_cor[curCount] = hist_cor.get(curCount, 0) + 1 |
|
token_cor[len(tmp)-tmp.count(0)] = token_cor.get(len(tmp)-tmp.count(0), 0) + 1 |
|
label_cor[target_t[i].item()] = label_cor.get(target_t[i].item(), 0) + 1 |
|
del input_t |
|
del target_t |
|
except: |
|
continue |
|
print(hist_len) |
|
print(token_len) |
|
print(label_len) |
|
print(hist_cor) |
|
print(token_cor) |
|
print(label_cor) |
|
print(comp_mat) |
|
test_loss /= len(data_loader.dataset) |
|
accuracy = correct_count / len(data_loader.dataset) |
|
|
|
print( |
|
"Performance on test set: " |
|
"Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format( |
|
test_loss, correct_count, len(data_loader.dataset), |
|
100. * accuracy |
|
) |
|
) |
|
|
|
return test_loss, accuracy |
|
|
|
|
|
def predict(input_sentence, model, classes, cached=False, device='cpu'): |
|
input_t = model.tokenizer.encode(input_sentence) |
|
input_t = torch.tensor([input_t], dtype=torch.long, device=device) |
|
if cached: |
|
input_t = model.avg_representation(input_t) |
|
|
|
log_probs = model(input_t).data.cpu().numpy().flatten().tolist() |
|
print("Input sentence:", input_sentence) |
|
print("Predictions:", ", ".join( |
|
"{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in |
|
zip(classes, log_probs) |
|
)) |
|
|
|
|
|
def get_cached_data_loader(dataset, batch_size, discriminator, |
|
shuffle=False, device='cpu'): |
|
data_loader = torch.utils.data.DataLoader(dataset=dataset, |
|
batch_size=batch_size, |
|
collate_fn=collate_fn) |
|
|
|
xs = [] |
|
ys = [] |
|
for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)): |
|
with torch.no_grad(): |
|
x = x.to(device) |
|
avg_rep = discriminator.avg_representation(x).cpu().detach() |
|
avg_rep_list = torch.unbind(avg_rep.unsqueeze(1)) |
|
xs += avg_rep_list |
|
ys += y.cpu().numpy().tolist() |
|
|
|
data_loader = torch.utils.data.DataLoader( |
|
dataset=Dataset(xs, ys), |
|
batch_size=batch_size, |
|
shuffle=shuffle, |
|
collate_fn=cached_collate_fn) |
|
|
|
return data_loader |
|
|
|
|
|
def get_idx2class(dataset_fp): |
|
classes = set() |
|
with open(dataset_fp) as f: |
|
csv_reader = csv.reader(f, delimiter="\t") |
|
for row in tqdm(csv_reader, ascii=True): |
|
if row: |
|
classes.add(row[0]) |
|
|
|
return sorted(classes) |
|
|
|
|
|
def get_generic_dataset(dataset_fp, tokenizer, device, |
|
idx2class=None, add_eos_token=False): |
|
if not idx2class: |
|
idx2class = get_idx2class(dataset_fp) |
|
class2idx = {c: i for i, c in enumerate(idx2class)} |
|
|
|
x = [] |
|
y = [] |
|
with open(dataset_fp) as f: |
|
csv_reader = csv.reader(f, delimiter="\t") |
|
for i, row in enumerate(tqdm(csv_reader, ascii=True)): |
|
if row: |
|
label = row[0] |
|
text = row[1] |
|
|
|
try: |
|
seq = tokenizer.encode(text) |
|
if (len(seq) < max_length_seq): |
|
if add_eos_token: |
|
seq = [50256] + seq |
|
seq = torch.tensor( |
|
seq, |
|
device=device, |
|
dtype=torch.long |
|
) |
|
|
|
else: |
|
print( |
|
"Line {} is longer than maximum length {}".format( |
|
i, max_length_seq |
|
)) |
|
continue |
|
|
|
x.append(seq) |
|
y.append(class2idx[label]) |
|
|
|
except: |
|
print("Error tokenizing line {}, skipping it".format(i)) |
|
pass |
|
|
|
return Dataset(x, y) |
|
|
|
|
|
def train_discriminator( |
|
dataset, |
|
dataset_fp=None, |
|
pretrained_model="gpt2-medium", |
|
epochs=10, |
|
learning_rate=0.0001, |
|
weight_decay=0.0, |
|
batch_size=64, |
|
log_interval=10, |
|
save_model=False, |
|
cached=False, |
|
no_cuda=False, |
|
output_fp='.', |
|
fp=None, |
|
is_deep=False, |
|
is_deeper=False, |
|
use_xlnet=False, |
|
unfreeze=False |
|
): |
|
device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu" |
|
add_eos_token = pretrained_model.startswith("gpt2") |
|
|
|
if save_model: |
|
if not os.path.exists(output_fp): |
|
os.makedirs(output_fp) |
|
classifier_head_meta_fp = os.path.join( |
|
output_fp, "{}_classifier_head_meta.json".format(dataset) |
|
) |
|
classifier_head_fp_pattern = os.path.join( |
|
output_fp, "{}_classifier_head_epoch".format(dataset) + "_{}.pt" |
|
) |
|
|
|
print("Preprocessing {} dataset...".format(dataset)) |
|
start = time.time() |
|
|
|
if dataset == "SST": |
|
idx2class = ["positive", "negative", "very positive", "very negative", |
|
"neutral"] |
|
class2idx = {c: i for i, c in enumerate(idx2class)} |
|
|
|
discriminator = Discriminator( |
|
class_size=len(idx2class), |
|
pretrained_model=pretrained_model, |
|
cached_mode=cached, |
|
device=device, |
|
fp=fp, |
|
is_deep=is_deep, |
|
is_deeper=is_deeper, |
|
use_xlnet=use_xlnet, |
|
unfreeze=unfreeze |
|
).to(device) |
|
|
|
text = torchtext_data.Field() |
|
label = torchtext_data.Field(sequential=False) |
|
train_data, val_data, test_data = datasets.SST.splits( |
|
text, |
|
label, |
|
fine_grained=True, |
|
train_subtrees=True, |
|
) |
|
|
|
x = [] |
|
y = [] |
|
for i in trange(len(train_data), ascii=True): |
|
seq = TreebankWordDetokenizer().detokenize( |
|
vars(train_data[i])["text"] |
|
) |
|
seq = discriminator.tokenizer.encode(seq) |
|
if add_eos_token: |
|
seq = [50256] + seq |
|
seq = torch.tensor(seq, device=device, dtype=torch.long) |
|
x.append(seq) |
|
y.append(class2idx[vars(train_data[i])["label"]]) |
|
train_dataset = Dataset(x, y) |
|
|
|
test_x = [] |
|
test_y = [] |
|
for i in trange(len(test_data), ascii=True): |
|
seq = TreebankWordDetokenizer().detokenize( |
|
vars(test_data[i])["text"] |
|
) |
|
seq = discriminator.tokenizer.encode(seq) |
|
if add_eos_token: |
|
seq = [50256] + seq |
|
seq = torch.tensor(seq, device=device, dtype=torch.long) |
|
test_x.append(seq) |
|
test_y.append(class2idx[vars(test_data[i])["label"]]) |
|
test_dataset = Dataset(test_x, test_y) |
|
|
|
discriminator_meta = { |
|
"class_size": len(idx2class), |
|
"embed_size": discriminator.embed_size, |
|
"pretrained_model": pretrained_model, |
|
"class_vocab": class2idx, |
|
"default_class": 2, |
|
} |
|
|
|
elif dataset == "5_PerSoothe": |
|
if dataset_fp is None: |
|
raise ValueError("When generic dataset is selected, " |
|
"dataset_fp needs to be specified aswell.") |
|
idx2class = ["soothes", "improve", "neutral", "trouble", "worsens"] |
|
class2idx = {c: i for i, c in enumerate(idx2class)} |
|
|
|
discriminator = Discriminator( |
|
class_size=len(idx2class), |
|
pretrained_model=pretrained_model, |
|
cached_mode=cached, |
|
device=device, |
|
fp=fp, |
|
is_deep=is_deep, |
|
is_deeper=is_deeper, |
|
use_xlnet=use_xlnet, |
|
unfreeze=unfreeze |
|
).to(device) |
|
|
|
finetuning_data = load_dataset('csv', data_files=dataset_fp) |
|
finetuning_data = finetuning_data["train"].train_test_split(test_size=0.1) |
|
|
|
train_data = finetuning_data["train"] |
|
val_data = finetuning_data["test"] |
|
test_data = finetuning_data["test"] |
|
|
|
x = [] |
|
y = [] |
|
for i in trange(len(train_data), ascii=True): |
|
seq = train_data[i]["text"] |
|
seq = discriminator.tokenizer.encode(seq) |
|
if add_eos_token: |
|
seq = [50256] + seq |
|
seq = torch.tensor(seq, device=device, dtype=torch.long) |
|
x.append(seq) |
|
y.append(class2idx[train_data[i]["label"]]) |
|
train_dataset = Dataset(x, y) |
|
|
|
test_x = [] |
|
test_y = [] |
|
for i in trange(len(test_data), ascii=True): |
|
seq = test_data[i]["text"] |
|
seq = discriminator.tokenizer.encode(seq) |
|
if add_eos_token: |
|
seq = [50256] + seq |
|
seq = torch.tensor(seq, device=device, dtype=torch.long) |
|
test_x.append(seq) |
|
test_y.append(class2idx[test_data[i]["label"]]) |
|
test_dataset = Dataset(test_x, test_y) |
|
|
|
discriminator_meta = { |
|
"class_size": len(idx2class), |
|
"embed_size": discriminator.embed_size, |
|
"pretrained_model": pretrained_model, |
|
"class_vocab": class2idx, |
|
"default_class": 2, |
|
} |
|
|
|
elif dataset == "3_PerSoothe": |
|
if dataset_fp is None: |
|
raise ValueError("When generic dataset is selected, " |
|
"dataset_fp needs to be specified aswell.") |
|
|
|
idx2class = ["soothes", "neutral", "worsens"] |
|
class2idx = {c: i for i, c in enumerate(idx2class)} |
|
|
|
discriminator = Discriminator( |
|
class_size=len(idx2class), |
|
pretrained_model=pretrained_model, |
|
cached_mode=cached, |
|
device=device, |
|
fp=fp, |
|
is_deep=is_deep, |
|
is_deeper=is_deeper, |
|
use_xlnet=use_xlnet, |
|
unfreeze=unfreeze |
|
).to(device) |
|
|
|
finetuning_data = load_dataset('csv', data_files=dataset_fp) |
|
finetuning_data = finetuning_data["train"].train_test_split(test_size=0.1) |
|
|
|
train_data = finetuning_data["train"] |
|
val_data = finetuning_data["test"] |
|
test_data = finetuning_data["test"] |
|
|
|
x = [] |
|
y = [] |
|
for i in trange(len(train_data), ascii=True): |
|
seq = train_data[i]["text"] |
|
seq = discriminator.tokenizer.encode(seq) |
|
if add_eos_token: |
|
seq = [50256] + seq |
|
seq = torch.tensor(seq, device="cpu", dtype=torch.long) |
|
x.append(seq) |
|
y.append(class2idx[train_data[i]["label"]]) |
|
train_dataset = Dataset(x, y) |
|
|
|
test_x = [] |
|
test_y = [] |
|
for i in trange(len(test_data), ascii=True): |
|
seq = test_data[i]["text"] |
|
seq = discriminator.tokenizer.encode(seq) |
|
if add_eos_token: |
|
seq = [50256] + seq |
|
seq = torch.tensor(seq, device="cpu", dtype=torch.long) |
|
test_x.append(seq) |
|
test_y.append(class2idx[test_data[i]["label"]]) |
|
test_dataset = Dataset(test_x, test_y) |
|
|
|
discriminator_meta = { |
|
"class_size": len(idx2class), |
|
"embed_size": discriminator.embed_size, |
|
"pretrained_model": pretrained_model, |
|
"class_vocab": class2idx, |
|
"default_class": 2, |
|
} |
|
elif dataset == "3_PerSoothe_min": |
|
if dataset_fp is None: |
|
raise ValueError("When generic dataset is selected, " |
|
"dataset_fp needs to be specified aswell.") |
|
|
|
idx2class = ["soothes", "neutral", "worsens"] |
|
class2idx = {c: i for i, c in enumerate(idx2class)} |
|
|
|
discriminator = Discriminator( |
|
class_size=len(idx2class), |
|
pretrained_model=pretrained_model, |
|
cached_mode=cached, |
|
device=device, |
|
fp=fp, |
|
is_deep=is_deep, |
|
is_deeper=is_deeper, |
|
use_xlnet=use_xlnet, |
|
unfreeze=unfreeze |
|
).to(device) |
|
|
|
finetuning_data = load_dataset('csv', data_files=dataset_fp) |
|
finetuning_data = finetuning_data["train"].train_test_split(test_size=0.001) |
|
|
|
train_data = finetuning_data["train"] |
|
val_data = finetuning_data["test"] |
|
test_data = finetuning_data["test"] |
|
|
|
x = [] |
|
y = [] |
|
for i in trange(len(train_data), ascii=True): |
|
seq = train_data[i]["text"] |
|
seq = discriminator.tokenizer.encode(seq) |
|
if add_eos_token: |
|
seq = [50256] + seq |
|
seq = torch.tensor(seq, device="cpu", dtype=torch.long) |
|
x.append(seq) |
|
y.append(class2idx[train_data[i]["label"]]) |
|
train_dataset = Dataset(x, y) |
|
|
|
test_x = [] |
|
test_y = [] |
|
for i in trange(len(test_data), ascii=True): |
|
seq = test_data[i]["text"] |
|
seq = discriminator.tokenizer.encode(seq) |
|
if add_eos_token: |
|
seq = [50256] + seq |
|
seq = torch.tensor(seq, device="cpu", dtype=torch.long) |
|
test_x.append(seq) |
|
test_y.append(class2idx[test_data[i]["label"]]) |
|
test_dataset = Dataset(test_x, test_y) |
|
|
|
discriminator_meta = { |
|
"class_size": len(idx2class), |
|
"embed_size": discriminator.embed_size, |
|
"pretrained_model": pretrained_model, |
|
"class_vocab": class2idx, |
|
"default_class": 2, |
|
} |
|
elif dataset == "2_PerSoothe": |
|
if dataset_fp is None: |
|
raise ValueError("When generic dataset is selected, " |
|
"dataset_fp needs to be specified aswell.") |
|
|
|
idx2class = ["soothes", "neutral"] |
|
class2idx = {c: i for i, c in enumerate(idx2class)} |
|
|
|
discriminator = Discriminator( |
|
class_size=len(idx2class), |
|
pretrained_model=pretrained_model, |
|
cached_mode=cached, |
|
device=device, |
|
fp=fp, |
|
is_deep=is_deep, |
|
is_deeper=is_deeper, |
|
use_xlnet=use_xlnet, |
|
unfreeze=unfreeze |
|
).to(device) |
|
|
|
finetuning_data = load_dataset('csv', data_files=dataset_fp) |
|
finetuning_data = finetuning_data["train"].train_test_split(test_size=0.1) |
|
|
|
train_data = finetuning_data["train"] |
|
val_data = finetuning_data["test"] |
|
test_data = finetuning_data["test"] |
|
|
|
x = [] |
|
y = [] |
|
for i in trange(len(train_data), ascii=True): |
|
seq = train_data[i]["text"] |
|
seq = discriminator.tokenizer.encode(seq) |
|
if add_eos_token: |
|
seq = [50256] + seq |
|
seq = torch.tensor(seq, device=device, dtype=torch.long) |
|
x.append(seq) |
|
y.append(class2idx[train_data[i]["label"]]) |
|
train_dataset = Dataset(x, y) |
|
|
|
test_x = [] |
|
test_y = [] |
|
for i in trange(len(test_data), ascii=True): |
|
seq = test_data[i]["text"] |
|
seq = discriminator.tokenizer.encode(seq) |
|
if add_eos_token: |
|
seq = [50256] + seq |
|
seq = torch.tensor(seq, device=device, dtype=torch.long) |
|
test_x.append(seq) |
|
test_y.append(class2idx[test_data[i]["label"]]) |
|
test_dataset = Dataset(test_x, test_y) |
|
|
|
discriminator_meta = { |
|
"class_size": len(idx2class), |
|
"embed_size": discriminator.embed_size, |
|
"pretrained_model": pretrained_model, |
|
"class_vocab": class2idx, |
|
"default_class": 2, |
|
} |
|
else: |
|
|
|
|
|
|
|
if dataset_fp is None: |
|
raise ValueError("When generic dataset is selected, " |
|
"dataset_fp needs to be specified aswell.") |
|
|
|
idx2class = get_idx2class(dataset_fp) |
|
|
|
discriminator = Discriminator( |
|
class_size=len(idx2class), |
|
pretrained_model=pretrained_model, |
|
cached_mode=cached, |
|
device=device, |
|
fp=fp, |
|
is_deep=is_deep, |
|
is_deeper=is_deeper, |
|
use_xlnet=use_xlnet, |
|
unfreeze=unfreeze |
|
).to(device) |
|
|
|
full_dataset = get_generic_dataset( |
|
dataset_fp, discriminator.tokenizer, device, |
|
idx2class=idx2class, add_eos_token=add_eos_token |
|
) |
|
train_size = int(0.9 * len(full_dataset)) |
|
test_size = len(full_dataset) - train_size |
|
train_dataset, test_dataset = torch.utils.data.random_split( |
|
full_dataset, |
|
[train_size, test_size] |
|
) |
|
|
|
discriminator_meta = { |
|
"class_size": len(idx2class), |
|
"embed_size": discriminator.embed_size, |
|
"pretrained_model": pretrained_model, |
|
"class_vocab": {c: i for i, c in enumerate(idx2class)}, |
|
"default_class": 0, |
|
} |
|
|
|
end = time.time() |
|
print("Preprocessed {} data points".format( |
|
len(train_dataset) + len(test_dataset)) |
|
) |
|
print("Data preprocessing took: {:.3f}s".format(end - start)) |
|
|
|
if cached: |
|
print("Building representation cache...") |
|
|
|
start = time.time() |
|
|
|
train_loader = get_cached_data_loader( |
|
train_dataset, batch_size, discriminator, |
|
shuffle=True, device="cpu" |
|
) |
|
|
|
test_loader = get_cached_data_loader( |
|
test_dataset, batch_size, discriminator, device="cpu" |
|
) |
|
|
|
end = time.time() |
|
print("Building representation cache took: {:.3f}s".format(end - start)) |
|
|
|
else: |
|
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, |
|
batch_size=batch_size, |
|
shuffle=True, |
|
collate_fn=collate_fn) |
|
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, |
|
batch_size=batch_size, |
|
collate_fn=collate_fn) |
|
|
|
if save_model: |
|
with open(classifier_head_meta_fp, "w") as meta_file: |
|
json.dump(discriminator_meta, meta_file) |
|
|
|
optimizer = optim.Adam(discriminator.parameters(), lr=learning_rate, weight_decay=weight_decay) |
|
|
|
test_losses = [] |
|
test_accuracies = [] |
|
|
|
for epoch in range(epochs): |
|
|
|
start = time.time() |
|
print("\nEpoch", epoch + 1) |
|
|
|
train_epoch( |
|
discriminator=discriminator, |
|
data_loader=train_loader, |
|
optimizer=optimizer, |
|
epoch=epoch, |
|
log_interval=log_interval, |
|
device=device |
|
) |
|
test_loss, test_accuracy = evaluate_performance( |
|
data_loader=test_loader, |
|
discriminator=discriminator, |
|
device=device |
|
) |
|
|
|
end = time.time() |
|
print("Epoch took: {:.3f}s".format(end - start)) |
|
|
|
test_losses.append(test_loss) |
|
test_accuracies.append(test_accuracy) |
|
|
|
print("\nExample prediction") |
|
predict(example_sentence, discriminator, idx2class, |
|
cached=cached, device=device) |
|
|
|
if save_model: |
|
|
|
|
|
|
|
|
|
torch.save(discriminator.get_classifier().state_dict(), |
|
classifier_head_fp_pattern.format(epoch + 1)) |
|
if save_model and unfreeze: |
|
torch.save(discriminator.encoder.state_dict(), |
|
classifier_head_fp_pattern.format(0)) |
|
min_loss = float("inf") |
|
min_loss_epoch = 0 |
|
max_acc = 0.0 |
|
max_acc_epoch = 0 |
|
print("Test performance per epoch") |
|
print("epoch\tloss\tacc") |
|
for e, (loss, acc) in enumerate(zip(test_losses, test_accuracies)): |
|
print("{}\t{}\t{}".format(e + 1, loss, acc)) |
|
if loss < min_loss: |
|
min_loss = loss |
|
min_loss_epoch = e + 1 |
|
if acc > max_acc: |
|
max_acc = acc |
|
max_acc_epoch = e + 1 |
|
print("Min loss: {} - Epoch: {}".format(min_loss, min_loss_epoch)) |
|
print("Max acc: {} - Epoch: {}".format(max_acc, max_acc_epoch)) |
|
|
|
return discriminator, discriminator_meta |
|
|
|
|
|
def load_classifier_head(weights_path, meta_path, device='cpu',is_deep=False,is_deeper=False): |
|
with open(meta_path, 'r', encoding="utf8") as f: |
|
meta_params = json.load(f) |
|
classifier_head = ClassificationHead( |
|
class_size=meta_params['class_size'], |
|
embed_size=meta_params['embed_size'], |
|
is_deep=is_deep, |
|
is_deeper=is_deeper |
|
).to(device) |
|
classifier_head.load_state_dict( |
|
torch.load(weights_path, map_location=device)) |
|
classifier_head.eval() |
|
return classifier_head, meta_params |
|
|
|
|
|
def load_discriminator(weights_path, meta_path, device='cpu',is_deep=False,is_deeper=False): |
|
classifier_head, meta_param = load_classifier_head( |
|
weights_path, meta_path, device, is_deep, is_deeper |
|
) |
|
discriminator = Discriminator( |
|
pretrained_model=meta_param['pretrained_model'], |
|
classifier_head=classifier_head, |
|
cached_mode=False, |
|
device=device |
|
) |
|
return discriminator, meta_param |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser( |
|
description="Train a discriminator on top of GPT-2 representations") |
|
parser.add_argument("--dataset", type=str, default="SST", |
|
choices=("SST", "generic", "5_PerSoothe", "3_PerSoothe", "3_PerSoothe_min", "2_PerSoothe"), |
|
help="dataset to train the discriminator on." |
|
"In case of generic, the dataset is expected" |
|
"to be a TSBV file with structure: class \\t text") |
|
parser.add_argument("--dataset_fp", type=str, default="", |
|
help="File path of the dataset to use. " |
|
"Needed only in case of generic datadset") |
|
parser.add_argument("--pretrained_model", type=str, default="gpt2-medium", |
|
help="Pretrained model to use as encoder") |
|
parser.add_argument("--epochs", type=int, default=10, metavar="N", |
|
help="Number of training epochs") |
|
parser.add_argument("--learning_rate", type=float, default=0.0001, |
|
help="Learnign rate") |
|
parser.add_argument("--weight_decay", type=float, default=0.0, |
|
help="Weight decay") |
|
parser.add_argument("--batch_size", type=int, default=64, metavar="N", |
|
help="input batch size for training (default: 64)") |
|
parser.add_argument("--log_interval", type=int, default=10, metavar="N", |
|
help="how many batches to wait before logging training status") |
|
parser.add_argument("--save_model", action="store_true", |
|
help="whether to save the model") |
|
parser.add_argument("--cached", action="store_true", |
|
help="whether to cache the input representations") |
|
parser.add_argument("--no_cuda", action="store_true", |
|
help="use to turn off cuda") |
|
parser.add_argument("--output_fp", default=".", |
|
help="path to save the output to") |
|
parser.add_argument("--fp", type=str, default=None, help="pretrained discriminator") |
|
parser.add_argument("--is_deep", action="store_true", |
|
help="whether to use deep classifier") |
|
parser.add_argument("--is_deeper", action="store_true", |
|
help="whether to use deeper classifier") |
|
parser.add_argument("--use_xlnet", action="store_true", |
|
help="whether to use xlnet classifier") |
|
parser.add_argument("--unfreeze", action="store_true", |
|
help="whether to train encoder as well") |
|
args = parser.parse_args() |
|
|
|
train_discriminator(**(vars(args))) |
|
|