from transformers import AutoTokenizer, AutoModelForCausalLM import torch import gradio as gr # Load the tokenizer and model repo_name = "nvidia/Hymba-1.5B-Base" # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True) model = model.cuda().to(torch.bfloat16) # Define the chatbot function def chat_with_hymba(prompt): inputs = tokenizer(prompt, return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_length=64, do_sample=True, temperature=0.7, use_cache=True) response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) return response # Create Gradio Interface interface = gr.Interface( fn=chat_with_hymba, inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), outputs="text", title="Chat with Hymba", description="Interact with the Hymba-1.5B model in real-time!" ) # Launch the interface if __name__ == "__main__": interface.launch()