#!/usr/bin/env python # coding: utf-8 #dosyayı py olarak kaydet ve komut satırını kullanarak streamlit run streamlit.py import streamlit as st from tensorflow.keras.models import load_model from PIL import Image import numpy as np import cv2 model=load_model('tr_banknot_model.h5') def process_image(img): img=img.resize((30,30)) img=np.array(img) img=img/255.0 img=np.expand_dims(img,axis=0) return img st.title('Tr Banknot @zaferturan') st.write('Banknot resmini yükleyin') file=st.file_uploader('Bir resim seç', type= ['jpg','jpeg','png']) class_names=['5','10','20','50','100', '200'] if file is not None: img=Image.open(file) st.image(img,caption='yuklenen resim') image=process_image(img) prediction=model.predict(image) predicted_class=np.argmax(prediction) st.write(prediction) st.write('Tahmin:₺',class_names[predicted_class])