Delete app.py
Browse files
app.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
from Functions.write_stream import user_data
|
2 |
-
import streamlit as st
|
3 |
-
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, ServiceContext
|
4 |
-
from llama_index.llms.llama_cpp import LlamaCPP
|
5 |
-
from llama_index.llms.llama_cpp.llama_utils import messages_to_prompt, completion_to_prompt
|
6 |
-
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
7 |
-
|
8 |
-
|
9 |
-
directory = "Knowledge Base/"
|
10 |
-
|
11 |
-
|
12 |
-
documents = SimpleDirectoryReader(directory).load_data()
|
13 |
-
|
14 |
-
llm = LlamaCPP(
|
15 |
-
# You can pass in the URL to a GGML model to download it automatically
|
16 |
-
model_url='https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q2_K.gguf',
|
17 |
-
# optionally, you can set the path to a pre-downloaded model instead of model_url
|
18 |
-
model_path=None,
|
19 |
-
temperature=0.75,
|
20 |
-
max_new_tokens=256,
|
21 |
-
# llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
|
22 |
-
context_window=3900,
|
23 |
-
messages_to_prompt=messages_to_prompt,
|
24 |
-
completion_to_prompt=completion_to_prompt,
|
25 |
-
verbose=True,
|
26 |
-
)
|
27 |
-
print("working -3")
|
28 |
-
|
29 |
-
embed_model = HuggingFaceEmbeddings(model_name="thenlper/gte-large")
|
30 |
-
|
31 |
-
print("working -2")
|
32 |
-
|
33 |
-
service_context = ServiceContext.from_defaults(
|
34 |
-
chunk_size= 256,
|
35 |
-
llm=llm,
|
36 |
-
embed_model=embed_model
|
37 |
-
)
|
38 |
-
print("working -1")
|
39 |
-
|
40 |
-
index = VectorStoreIndex.from_documents(documents, service_context=service_context, show_progress=True)
|
41 |
-
print("working 0")
|
42 |
-
|
43 |
-
query_engine = index.as_query_engine()
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
###############============= USER INTERFACE (UI )###############=============
|
48 |
-
|
49 |
-
|
50 |
-
st.title("Wiki Bot")
|
51 |
-
|
52 |
-
if "messages" not in st.session_state:
|
53 |
-
st.session_state.messages = []
|
54 |
-
|
55 |
-
|
56 |
-
for message in st.session_state.messages:
|
57 |
-
with st.chat_message(message["role"]):
|
58 |
-
st.markdown(message["content"])
|
59 |
-
|
60 |
-
|
61 |
-
prompt = st.chat_input("Enter Your Question:")
|
62 |
-
|
63 |
-
|
64 |
-
if prompt:
|
65 |
-
|
66 |
-
with st.chat_message("user"):
|
67 |
-
st.markdown(prompt)
|
68 |
-
st.session_state.messages.append({"role":"user","content":prompt})
|
69 |
-
|
70 |
-
reply= query_engine.query(prompt)
|
71 |
-
response = user_data(function_name=reply)
|
72 |
-
|
73 |
-
with st.chat_message("assistant"):
|
74 |
-
st.write_stream(response)
|
75 |
-
print("working!!")
|
76 |
-
st.session_state.messages.append({"role":"assistant","content":reply})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|