zahidpichen commited on
Commit
5e47f7c
·
verified ·
1 Parent(s): a589714

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -76
app.py DELETED
@@ -1,76 +0,0 @@
1
- from Functions.write_stream import user_data
2
- import streamlit as st
3
- from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, ServiceContext
4
- from llama_index.llms.llama_cpp import LlamaCPP
5
- from llama_index.llms.llama_cpp.llama_utils import messages_to_prompt, completion_to_prompt
6
- from langchain.embeddings.huggingface import HuggingFaceEmbeddings
7
-
8
-
9
- directory = "Knowledge Base/"
10
-
11
-
12
- documents = SimpleDirectoryReader(directory).load_data()
13
-
14
- llm = LlamaCPP(
15
- # You can pass in the URL to a GGML model to download it automatically
16
- model_url='https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q2_K.gguf',
17
- # optionally, you can set the path to a pre-downloaded model instead of model_url
18
- model_path=None,
19
- temperature=0.75,
20
- max_new_tokens=256,
21
- # llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
22
- context_window=3900,
23
- messages_to_prompt=messages_to_prompt,
24
- completion_to_prompt=completion_to_prompt,
25
- verbose=True,
26
- )
27
- print("working -3")
28
-
29
- embed_model = HuggingFaceEmbeddings(model_name="thenlper/gte-large")
30
-
31
- print("working -2")
32
-
33
- service_context = ServiceContext.from_defaults(
34
- chunk_size= 256,
35
- llm=llm,
36
- embed_model=embed_model
37
- )
38
- print("working -1")
39
-
40
- index = VectorStoreIndex.from_documents(documents, service_context=service_context, show_progress=True)
41
- print("working 0")
42
-
43
- query_engine = index.as_query_engine()
44
-
45
-
46
-
47
- ###############============= USER INTERFACE (UI )###############=============
48
-
49
-
50
- st.title("Wiki Bot")
51
-
52
- if "messages" not in st.session_state:
53
- st.session_state.messages = []
54
-
55
-
56
- for message in st.session_state.messages:
57
- with st.chat_message(message["role"]):
58
- st.markdown(message["content"])
59
-
60
-
61
- prompt = st.chat_input("Enter Your Question:")
62
-
63
-
64
- if prompt:
65
-
66
- with st.chat_message("user"):
67
- st.markdown(prompt)
68
- st.session_state.messages.append({"role":"user","content":prompt})
69
-
70
- reply= query_engine.query(prompt)
71
- response = user_data(function_name=reply)
72
-
73
- with st.chat_message("assistant"):
74
- st.write_stream(response)
75
- print("working!!")
76
- st.session_state.messages.append({"role":"assistant","content":reply})