zahoor54321 commited on
Commit
ac24b67
1 Parent(s): 58ebc86

Create eval.py

Browse files
Files changed (1) hide show
  1. eval.py +181 -0
eval.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import argparse
3
+ import re
4
+ from typing import Dict
5
+
6
+ import torch
7
+ from datasets import Audio, Dataset, load_dataset, load_metric
8
+
9
+ from transformers import AutoFeatureExtractor, pipeline
10
+
11
+
12
+ def log_results(result: Dataset, args: Dict[str, str]):
13
+ """DO NOT CHANGE. This function computes and logs the result metrics."""
14
+
15
+ log_outputs = args.log_outputs
16
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
17
+
18
+ # load metric
19
+ wer = load_metric("wer")
20
+ cer = load_metric("cer")
21
+
22
+ # compute metrics
23
+ wer_result = wer.compute(
24
+ references=result["target"], predictions=result["prediction"]
25
+ )
26
+ cer_result = cer.compute(
27
+ references=result["target"], predictions=result["prediction"]
28
+ )
29
+
30
+ # print & log results
31
+ result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
32
+ print(result_str)
33
+
34
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
35
+ f.write(result_str)
36
+
37
+ # log all results in text file. Possibly interesting for analysis
38
+ if log_outputs is not None:
39
+ pred_file = f"log_{dataset_id}_predictions.txt"
40
+ target_file = f"log_{dataset_id}_targets.txt"
41
+
42
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
43
+
44
+ # mapping function to write output
45
+ def write_to_file(batch, i):
46
+ p.write(f"{i}" + "\n")
47
+ p.write(batch["prediction"] + "\n")
48
+ t.write(f"{i}" + "\n")
49
+ t.write(batch["target"] + "\n")
50
+
51
+ result.map(write_to_file, with_indices=True)
52
+
53
+
54
+ def normalize_text(text: str) -> str:
55
+ """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
56
+
57
+ chars_to_ignore_regex = """[\!\؛\،\٫\؟\۔\٪\"\'\:\-\‘\’]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
58
+
59
+ text = re.sub(chars_to_ignore_regex, "", text.lower())
60
+ text = re.sub("[،]", "", text)
61
+ text = re.sub("[؟]", "", text)
62
+ text = re.sub("['َ]", "", text)
63
+ text = re.sub("['ُ]", "", text)
64
+ text = re.sub("['ِ]", "", text)
65
+ text = re.sub("['ّ]", "", text)
66
+ text = re.sub("['ٔ]", "", text)
67
+ text = re.sub("['ٰ]", "", text)
68
+ text = re.sub("[ۂ]", "ہ", text)
69
+ text = re.sub("[ي]", "ی", text)
70
+ text = re.sub("[ؤ]", "و", text)
71
+ # batch["sentence"] = re.sub("[ئ]", 'ى', batch["sentence"])
72
+ text = re.sub("[ى]", "ی", text)
73
+ text = re.sub("[۔]", "", text)
74
+
75
+ # In addition, we can normalize the target text, e.g. removing new lines characters etc...
76
+ # note that order is important here!
77
+ token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
78
+
79
+ for t in token_sequences_to_ignore:
80
+ text = " ".join(text.split(t))
81
+
82
+ return text
83
+
84
+
85
+ def path_adjust(batch):
86
+ batch["path"] = "Data/ur/clips/" + str(batch["path"])
87
+ return batch
88
+
89
+
90
+ def main(args):
91
+ # load dataset
92
+ dataset = load_dataset(args.dataset, args.config, delimiter="\t", split=args.split)
93
+
94
+ # for testing: only process the first two examples as a test
95
+ # dataset = dataset.select(range(10))
96
+
97
+ # load processor
98
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
99
+ sampling_rate = feature_extractor.sampling_rate
100
+
101
+ # resample audio
102
+ dataset = dataset.map(path_adjust)
103
+ dataset = dataset.cast_column("path", Audio(sampling_rate=sampling_rate))
104
+
105
+ # load eval pipeline
106
+ if args.device is None:
107
+ args.device = 0 if torch.cuda.is_available() else -1
108
+ asr = pipeline(
109
+ "automatic-speech-recognition", model=args.model_id, device=args.device
110
+ )
111
+
112
+ # map function to decode audio
113
+ def map_to_pred(batch):
114
+ prediction = asr(
115
+ batch["path"]["array"],
116
+ chunk_length_s=args.chunk_length_s,
117
+ stride_length_s=args.stride_length_s,
118
+ )
119
+
120
+ batch["prediction"] = prediction["text"]
121
+ batch["target"] = normalize_text(batch["sentence"])
122
+ return batch
123
+
124
+ # run inference on all examples
125
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
126
+
127
+ # compute and log_results
128
+ # do not change function below
129
+ log_results(result, args)
130
+
131
+
132
+ if __name__ == "__main__":
133
+ parser = argparse.ArgumentParser()
134
+
135
+ parser.add_argument(
136
+ "--model_id",
137
+ type=str,
138
+ required=True,
139
+ help="Model identifier. Should be loadable with 🤗 Transformers",
140
+ )
141
+ parser.add_argument(
142
+ "--dataset",
143
+ type=str,
144
+ required=True,
145
+ help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
146
+ )
147
+ parser.add_argument(
148
+ "--config",
149
+ type=str,
150
+ required=True,
151
+ help="Config of the dataset. *E.g.* `'en'` for Common Voice",
152
+ )
153
+ parser.add_argument(
154
+ "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
155
+ )
156
+ parser.add_argument(
157
+ "--chunk_length_s",
158
+ type=float,
159
+ default=None,
160
+ help="Chunk length in seconds. Defaults to 5 seconds.",
161
+ )
162
+ parser.add_argument(
163
+ "--stride_length_s",
164
+ type=float,
165
+ default=None,
166
+ help="Stride of the audio chunks. Defaults to 1 second.",
167
+ )
168
+ parser.add_argument(
169
+ "--log_outputs",
170
+ action="store_true",
171
+ help="If defined, write outputs to log file for analysis.",
172
+ )
173
+ parser.add_argument(
174
+ "--device",
175
+ type=int,
176
+ default=None,
177
+ help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
178
+ )
179
+ args = parser.parse_args()
180
+
181
+ main(args)