Spaces:
Running
Running
Zai
commited on
Commit
·
c980322
1
Parent(s):
18943e5
continuing training
Browse files- headshot/data_prep.py +9 -9
- headshot/headshot.py +26 -5
- headshot/utils.py +2 -1
- interface/app.py +4 -0
headshot/data_prep.py
CHANGED
@@ -1,17 +1,17 @@
|
|
1 |
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.optim as optim
|
4 |
from torch.utils.data import DataLoader, Dataset
|
5 |
from torchvision import transforms, datasets
|
|
|
6 |
|
7 |
data_url = ''
|
8 |
|
9 |
-
|
10 |
class FaceDataset(Dataset):
|
11 |
-
def __init__(self,data,labels
|
12 |
-
self.tranforms =
|
13 |
-
|
14 |
-
|
|
|
|
|
15 |
|
16 |
def __len__(self):
|
17 |
return len(self.data)
|
@@ -21,6 +21,6 @@ class FaceDataset(Dataset):
|
|
21 |
image = self.data[idx]
|
22 |
label = self.labels[idx]
|
23 |
|
24 |
-
|
25 |
-
|
26 |
return image,label
|
|
|
1 |
import torch
|
|
|
|
|
2 |
from torch.utils.data import DataLoader, Dataset
|
3 |
from torchvision import transforms, datasets
|
4 |
+
from datasets import load_dataset
|
5 |
|
6 |
data_url = ''
|
7 |
|
|
|
8 |
class FaceDataset(Dataset):
|
9 |
+
def __init__(self,data,labels):
|
10 |
+
self.tranforms = transforms.Compose([
|
11 |
+
|
12 |
+
])
|
13 |
+
self.data = data
|
14 |
+
self.labels = labels
|
15 |
|
16 |
def __len__(self):
|
17 |
return len(self.data)
|
|
|
21 |
image = self.data[idx]
|
22 |
label = self.labels[idx]
|
23 |
|
24 |
+
|
25 |
+
image = self.transform(image)
|
26 |
return image,label
|
headshot/headshot.py
CHANGED
@@ -3,22 +3,43 @@ from torch import nn
|
|
3 |
from data_prep import FaceDataset
|
4 |
|
5 |
class Headshot(nn.Module):
|
6 |
-
def __init__(self):
|
7 |
super().__init__()
|
8 |
self.dataset = FaceDataset()
|
9 |
-
self.num_epoch =
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
def forward(self,x):
|
12 |
-
|
|
|
13 |
|
14 |
def train(self):
|
|
|
|
|
15 |
for epoch in range(self.num_epoch):
|
16 |
for i,(image,label) in enumerate(self.dataset):
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
def
|
20 |
points = self.forward(image)
|
21 |
|
|
|
|
|
22 |
|
23 |
def load_pretrain(self,name=""):
|
24 |
pretrained = torch.load(pretrained)
|
|
|
3 |
from data_prep import FaceDataset
|
4 |
|
5 |
class Headshot(nn.Module):
|
6 |
+
def __init__(self,num_epoch=20,lr=0.02):
|
7 |
super().__init__()
|
8 |
self.dataset = FaceDataset()
|
9 |
+
self.num_epoch = num_epoch
|
10 |
+
self.lr = lr
|
11 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
|
13 |
+
self.layer = nn.Sequential(
|
14 |
+
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
def forward(self,x):
|
19 |
+
out = self.layer
|
20 |
+
return out
|
21 |
|
22 |
def train(self):
|
23 |
+
loss_fn = nn.CrossEntropyLoss()
|
24 |
+
optimizer = torch.optim.Adam(self.parameters(),lr=self.lr)
|
25 |
for epoch in range(self.num_epoch):
|
26 |
for i,(image,label) in enumerate(self.dataset):
|
27 |
+
image,label = image.to(self.device),label.to(self.device)
|
28 |
+
|
29 |
+
optimizer.zero_grad()
|
30 |
+
|
31 |
+
output = self(image)
|
32 |
+
loss = loss_fn(output,label)
|
33 |
+
loss.backward()
|
34 |
+
optimizer.step()
|
35 |
+
print(f"epoch {epoch} loss:{loss.item()}")
|
36 |
+
|
37 |
|
38 |
+
def predict_image(self,image):
|
39 |
points = self.forward(image)
|
40 |
|
41 |
+
def predict_video(self,video):
|
42 |
+
pass
|
43 |
|
44 |
def load_pretrain(self,name=""):
|
45 |
pretrained = torch.load(pretrained)
|
headshot/utils.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import matplotlib.pyplot as plt
|
2 |
|
3 |
def display_img(image):
|
4 |
-
pass
|
|
|
|
1 |
import matplotlib.pyplot as plt
|
2 |
|
3 |
def display_img(image):
|
4 |
+
pass
|
5 |
+
|
interface/app.py
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
import cv2
|
2 |
import streamlit as st
|
3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
4 |
def detect_faces(image):
|
5 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
6 |
|
|
|
1 |
import cv2
|
2 |
import streamlit as st
|
3 |
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
def detect_faces(image):
|
9 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
10 |
|