import torch import streamlit as st import cv2 import numpy as np # from headshot import Headshot device = 'cuda' if torch.cuda.is_available() else 'cpu' # model = Headshot() def detect_faces(frame): # Implement your face detection logic here # For demonstration purposes, return a dummy bounding box return [(100, 100, 200, 200)] def main(): st.title("Headshot simulator") video_source = st.sidebar.radio("Select video source:", ("Webcam", "Upload", "Demo")) if video_source == "Webcam": cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break faces = detect_faces(frame) for face in faces: x, y, w, h = face cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) st.image(frame, channels="RGB") elif video_source == "Demo": # prediction, image = sample() pass else: uploaded_file = st.sidebar.file_uploader("Choose a video file", type=["mp4", "avi"]) if uploaded_file is not None: file_bytes = uploaded_file.read() cap = cv2.VideoCapture(uploaded_file.name) while True: ret, frame = cap.read() if not ret: break faces = detect_faces(frame) for face in faces: x, y, w, h = face cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) st.image(frame, channels="RGB") if __name__ == "__main__": main()