zaidmehdi's picture
adding back server port
6c4846e verified
import os
import gradio as gr
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from .utils import load_data
# Load model
model_name = "moussaKam/AraBART"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=21)
models_dir = os.path.join(os.path.dirname(__file__), '..', 'models')
model_file = os.path.join(models_dir, 'best_model_checkpoint.pth')
if os.path.exists(model_file):
with open(model_file, "rb") as f:
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
checkpoint = torch.load(model_file, map_location=device)
model.load_state_dict(checkpoint)
else:
print(f"Error: {model_file} not found.")
# Load label encoder
encoder_file = os.path.join(models_dir, 'label_encoder.pkl')
label_encoder = load_data(encoder_file)
# Load html
html_dir = os.path.join(os.path.dirname(__file__), "templates")
index_html_path = os.path.join(html_dir, "index.html")
if os.path.exists(index_html_path):
with open(index_html_path, "r") as html_file:
index_html = html_file.read()
else:
print(f"Error: {index_html_path} not found.")
def classify_arabic_dialect(text):
tokenized_text = tokenizer(text, return_tensors="pt")
output = model(**tokenized_text)
probabilities = F.softmax(output.logits, dim=1)[0]
labels = label_encoder.inverse_transform(range(len(probabilities)))
predictions = {labels[i]: probabilities[i] for i in range(len(probabilities))}
return predictions
def main():
with gr.Blocks() as demo:
gr.HTML(index_html)
input_text = gr.Textbox(label="Your Arabic Text")
submit_btn = gr.Button("Submit")
predictions = gr.Label(num_top_classes=3)
submit_btn.click(
fn=classify_arabic_dialect,
inputs=input_text,
outputs=predictions)
gr.Markdown("## Text Examples")
gr.Examples(
examples=[
"الله يعطيك الصحة هاد الطاجين بنين تبارك لله",
"بصح راك فاهم لازم الزيت",
"حضرتك بروح زي كدا؟ على طول النهار ده",
],
inputs=input_text)
gr.HTML("""
<p style="text-align: center;font-size: large;">
Checkout the <a href="https://github.com/zaidmehdi/arabic-dialect-classifier">Github Repo</a>
</p>
""")
demo.launch(server_port=8080)
if __name__ == "__main__":
main()