Spaces:
Sleeping
Sleeping
integrating new finetuned model
Browse files- .gitattributes +1 -0
- models/best_model_checkpoint.pth +3 -0
- models/logistic_regression.pkl +0 -0
- src/main.py +20 -14
.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
models/best_model_checkpoint.pth filter=lfs diff=lfs merge=lfs -text
|
models/best_model_checkpoint.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:393c58dcfc7d9f44298ae0defd11abfd18d49522c2997477c84f8f7d34e3a628
|
3 |
+
size 559417326
|
models/logistic_regression.pkl
DELETED
Binary file (132 kB)
|
|
src/main.py
CHANGED
@@ -1,22 +1,31 @@
|
|
1 |
import os
|
2 |
-
import pickle
|
3 |
|
4 |
import gradio as gr
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
from .utils import
|
8 |
|
9 |
|
10 |
# Load model
|
11 |
-
|
12 |
-
|
|
|
13 |
|
|
|
|
|
14 |
if os.path.exists(model_file):
|
15 |
with open(model_file, "rb") as f:
|
16 |
-
|
|
|
17 |
else:
|
18 |
print(f"Error: {model_file} not found.")
|
19 |
|
|
|
|
|
|
|
|
|
20 |
# Load html
|
21 |
html_dir = os.path.join(os.path.dirname(__file__), "templates")
|
22 |
index_html_path = os.path.join(html_dir, "index.html")
|
@@ -27,20 +36,17 @@ if os.path.exists(index_html_path):
|
|
27 |
else:
|
28 |
print(f"Error: {index_html_path} not found.")
|
29 |
|
30 |
-
# Load pre-trained model
|
31 |
-
model_name = "moussaKam/AraBART"
|
32 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
33 |
-
language_model = AutoModel.from_pretrained(model_name)
|
34 |
-
|
35 |
|
36 |
def classify_arabic_dialect(text):
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
40 |
predictions = {labels[i]: probabilities[i] for i in range(len(probabilities))}
|
41 |
|
42 |
return predictions
|
43 |
|
|
|
44 |
def main():
|
45 |
with gr.Blocks() as demo:
|
46 |
gr.HTML(index_html)
|
|
|
1 |
import os
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
|
8 |
+
from .utils import load_data
|
9 |
|
10 |
|
11 |
# Load model
|
12 |
+
model_name = "moussaKam/AraBART"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=21)
|
15 |
|
16 |
+
models_dir = os.path.join(os.path.dirname(__file__), '..', 'models')
|
17 |
+
model_file = os.path.join(models_dir, 'best_model_checkpoint.pth')
|
18 |
if os.path.exists(model_file):
|
19 |
with open(model_file, "rb") as f:
|
20 |
+
checkpoint = torch.load(model_file)
|
21 |
+
model.load_state_dict(checkpoint)
|
22 |
else:
|
23 |
print(f"Error: {model_file} not found.")
|
24 |
|
25 |
+
# Load label encoder
|
26 |
+
encoder_file = os.path.join(models_dir, 'label_encoder.pkl')
|
27 |
+
label_encoder = load_data(encoder_file)
|
28 |
+
|
29 |
# Load html
|
30 |
html_dir = os.path.join(os.path.dirname(__file__), "templates")
|
31 |
index_html_path = os.path.join(html_dir, "index.html")
|
|
|
36 |
else:
|
37 |
print(f"Error: {index_html_path} not found.")
|
38 |
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def classify_arabic_dialect(text):
|
41 |
+
tokenized_text = tokenizer(text, return_tensors="pt")
|
42 |
+
output = model(**tokenized_text)
|
43 |
+
probabilities = F.softmax(output.logits, dim=1)[0]
|
44 |
+
labels = label_encoder.inverse_transform(range(len(probabilities)))
|
45 |
predictions = {labels[i]: probabilities[i] for i in range(len(probabilities))}
|
46 |
|
47 |
return predictions
|
48 |
|
49 |
+
|
50 |
def main():
|
51 |
with gr.Blocks() as demo:
|
52 |
gr.HTML(index_html)
|