import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import accuracy_score, f1_score from sklearn.metrics import confusion_matrix import torch def extract_hidden_state(input_text, tokenizer, language_model): tokens = tokenizer(input_text, padding=True) with torch.no_grad(): outputs = language_model(tokens) return outputs.last_hidden_state def get_metrics(y_true, y_preds): accuracy = accuracy_score(y_true, y_preds) f1_macro = f1_score(y_true, y_preds, average="macro") f1_weighted = f1_score(y_true, y_preds, average="weighted") print(f"Accuracy: {accuracy}") print(f"F1 macro average: {f1_macro}") print(f"F1 weighted average: {f1_weighted}") def evaluate_predictions(model:str, train_preds, y_train, test_preds, y_test): print(model) print("\nTrain set:") get_metrics(y_train, train_preds) print("-"*50) print("Test set:") get_metrics(y_test, test_preds) def plot_confusion_matrix(y_true, y_preds): labels = sorted(set(y_true.tolist() + y_preds.tolist())) cm = confusion_matrix(y_true, y_preds) plt.figure(figsize=(12, 10)) sns.heatmap(cm, annot=True, cmap="Blues", xticklabels=labels, yticklabels=labels) plt.xlabel('Predicted Label') plt.ylabel('True Label') plt.title('Confusion Matrix') plt.show()