|
import argparse |
|
import re |
|
import uuid |
|
|
|
from transformers import AutoModel, AutoTokenizer |
|
from concrete.ml.common.serialization.loaders import load |
|
from utils_demo import * |
|
|
|
def load_models(): |
|
|
|
|
|
try: |
|
tokenizer = AutoTokenizer.from_pretrained("obi/deid_roberta_i2b2") |
|
embeddings_model = AutoModel.from_pretrained("obi/deid_roberta_i2b2") |
|
except: |
|
print("Error while loading Roberta") |
|
|
|
|
|
with open(LOGREG_MODEL_PATH, "r") as model_file: |
|
cml_ner_model = load(file=model_file) |
|
|
|
return embeddings_model, tokenizer, cml_ner_model |
|
|
|
|
|
def anonymize_with_cml(text, embeddings_model, tokenizer, cml_ner_model): |
|
token_pattern = r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+|\$\d+(?:\.\d+)?|\β¬\d+(?:\.\d+)?)" |
|
|
|
tokens = re.findall(token_pattern, text) |
|
uuid_map = {} |
|
processed_tokens = [] |
|
|
|
for token in tokens: |
|
if token.strip() and re.match(r"\w+", token): |
|
x = get_batch_text_representation([token], embeddings_model, tokenizer) |
|
prediction_proba = cml_ner_model.predict_proba(x, fhe="disable") |
|
probability = prediction_proba[0][1] |
|
prediction = probability >= 0.77 |
|
if prediction: |
|
if token not in uuid_map: |
|
uuid_map[token] = str(uuid.uuid4())[:8] |
|
processed_tokens.append(uuid_map[token]) |
|
else: |
|
processed_tokens.append(token) |
|
else: |
|
processed_tokens.append(token) |
|
|
|
anonymized_text = "".join(processed_tokens) |
|
return anonymized_text, uuid_map |
|
|
|
|
|
def anonymize_text(text, verbose=False, save=False): |
|
|
|
|
|
if verbose: |
|
print("Loading models..") |
|
embeddings_model, tokenizer, cml_ner_model = load_models() |
|
|
|
if verbose: |
|
print(f"\nText to process:--------------------\n{text}\n--------------------\n") |
|
|
|
|
|
if save: |
|
write_txt(ORIGINAL_FILE_PATH, text) |
|
|
|
|
|
anonymized_text, uuid_map = anonymize_with_cml(text, embeddings_model, tokenizer, cml_ner_model) |
|
|
|
|
|
if save: |
|
mapping = {o: (i, a) for i, (o, a) in enumerate(zip(text.split("\n\n"), anonymized_text.split("\n\n")))} |
|
write_txt(ANONYMIZED_FILE_PATH, anonymized_text) |
|
write_pickle(MAPPING_SENTENCES_PATH, mapping) |
|
|
|
if verbose: |
|
print(f"\nAnonymized text:--------------------\n{anonymized_text}\n--------------------\n") |
|
|
|
|
|
if save: |
|
write_json(MAPPING_UUID_PATH, uuid_map) |
|
|
|
if verbose and save: |
|
print(f"Original text saved to :{ORIGINAL_FILE_PATH}") |
|
print(f"Anonymized text saved to :{ANONYMIZED_FILE_PATH}") |
|
print(f"UUID mapping saved to :{MAPPING_UUID_PATH}") |
|
print(f"Sentence mapping saved to :{MAPPING_SENTENCES_PATH}") |
|
|
|
return anonymized_text |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser( |
|
description="Anonymize named entities in a text file and save the mapping to a JSON file." |
|
) |
|
parser.add_argument( |
|
"--file_path", |
|
type=str, |
|
default="files/original_document.txt", |
|
help="The path to the file to be processed.", |
|
) |
|
parser.add_argument( |
|
"--verbose", |
|
type=bool, |
|
default=True, |
|
help="This provides additional details about the program's execution.", |
|
) |
|
parser.add_argument("--save", type=bool, default=True, help="Save the files.") |
|
|
|
args = parser.parse_args() |
|
|
|
text = read_txt(args.file_path) |
|
|
|
anonymize_text(text, verbose=args.verbose, save=args.save) |
|
|