kcelia's picture
chore: print
bd738c2 unverified
raw
history blame
24.5 kB
import subprocess
import time
from typing import Dict, List, Tuple
import gradio as gr
import numpy as np
import pandas as pd
import requests
from symptoms_categories import SYMPTOMS_LIST
from utils import ( # pylint: disable=no-name-in-module
CLIENT_DIR,
CURRENT_DIR,
DEPLOYMENT_DIR,
INPUT_BROWSER_LIMIT,
KEYS_DIR,
SERVER_URL,
TARGET_COLUMNS,
TRAINING_FILENAME,
clean_directory,
get_disease_name,
load_data,
pretty_print,
)
from concrete.ml.deployment import FHEModelClient
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
time.sleep(3)
# pylint: disable=c-extension-no-member,invalid-name
def is_nan(inputs) -> bool:
"""
Check if the input is NaN.
Args:
inputs (any): The input to be checked.
Returns:
bool: True if the input is NaN or empty, False otherwise.
"""
return inputs is None or (inputs is not None and len(inputs) < 1)
# def fill_in_fn(default_disease: str, *checkbox_symptoms: Tuple[str]) -> Dict:
# """
# Fill in the gr.CheckBoxGroup list with the predefined symptoms of a selected default disease.
# Args:
# default_disease (str): The default disease
# *checkbox_symptoms (Tuple[str]): Tuple of selected symptoms
# Returns:
# dict: The updated gr.CheckBoxesGroup.
# """
# df = pd.read_csv(TRAINING_FILENAME)
# df_filtred = df[df[TARGET_COLUMNS[1]] == default_disease]
# symptoms = pretty_print(df_filtred.columns[df_filtred.eq(1).any()].to_list())
# if any(lst for lst in checkbox_symptoms if lst):
# for sublist in checkbox_symptoms:
# symptoms.extend(sublist)
# return {box: symptoms for box in check_boxes}
def get_user_symptoms_from_checkboxgroup(checkbox_symptoms: List) -> np.array:
"""
Convert the user symptoms into a binary vector representation.
Args:
checkbox_symptoms (list): A list of user symptoms.
Returns:
np.array: A binary vector representing the user's symptoms.
Raises:
KeyError: If a provided symptom is not recognized as a valid symptom.
"""
symptoms_vector = {key: 0 for key in valid_columns}
for pretty_symptom in checkbox_symptoms:
original_symptom = "_".join((pretty_symptom.lower().split(" ")))
if original_symptom not in symptoms_vector.keys():
raise KeyError(
f"The symptom '{original_symptom}' you provided is not recognized as a valid "
f"symptom.\nHere is the list of valid symptoms: {symptoms_vector}"
)
symptoms_vector[original_symptom] = 1
user_symptoms_vect = np.fromiter(symptoms_vector.values(), dtype=float)[np.newaxis, :]
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())
return user_symptoms_vect
def get_features_fn(*checked_symptoms: Tuple[str]) -> Dict:
"""
Get vector features based on the selected symptoms.
Args:
checked_symptoms (Tuple[str]): User symptoms
Returns:
Dict: The encoded user vector symptoms.
"""
if not any(lst for lst in checked_symptoms if lst):
return {
error_box1: gr.update(
visible=True, value="Enter a default disease or select your own symptoms"
),
}
return {
error_box1: gr.update(visible=False),
user_vect_box1: get_user_symptoms_from_checkboxgroup(pretty_print(checked_symptoms)),
}
def key_gen_fn(user_symptoms: List[str]) -> Dict:
"""
Generate keys for a given user.
Args:
user_symptoms (List[str]): The vector symptoms provided by the user.
Returns:
dict: A dictionary containing the generated keys and related information.
"""
clean_directory()
if is_nan(user_symptoms):
print("Error: Please submit your symptoms or select a default disease.")
return {
error_box2: gr.update(visible=True, value="Please submit your symptoms first"),
}
# Generate a random user ID
user_id = np.random.randint(0, 2**32)
print(f"Your user ID is: {user_id}....")
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
client.load()
print("CLIENT_LOADED")
# Creates the private and evaluation keys on the client side
client.generate_private_and_evaluation_keys()
# Get the serialized evaluation keys
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
assert isinstance(serialized_evaluation_keys, bytes)
# Save the evaluation key
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
with evaluation_key_path.open("wb") as f:
f.write(serialized_evaluation_keys)
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT]
return {
error_box2: gr.update(visible=False),
key_box: serialized_evaluation_keys_shorten_hex,
user_id_box: user_id,
key_len_box: f"{len(serialized_evaluation_keys) / (10**6):.2f} MB",
}
def encrypt_fn(user_symptoms: np.ndarray, user_id: str) -> None:
"""
Encrypt the user symptoms vector in the `Client Side`.
Args:
user_symptoms (List[str]): The vector symptoms provided by the user
user_id (user): The current user's ID
"""
if is_nan(user_id) or is_nan(user_symptoms):
print("Error in encryption step: Provide your symptoms and generate the evaluation keys.")
return {
error_box3: gr.update(
visible=True, value="Please provide your symptoms and generate the evaluation keys."
)
}
# Retrieve the client API
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
client.load()
user_symptoms = np.fromstring(user_symptoms[2:-2], dtype=int, sep=".").reshape(1, -1)
quant_user_symptoms = client.model.quantize_input(user_symptoms)
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
assert isinstance(encrypted_quantized_user_symptoms, bytes)
encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_symptoms"
with encrypted_input_path.open("wb") as f:
f.write(encrypted_quantized_user_symptoms)
encrypted_quantized_user_symptoms_shorten_hex = encrypted_quantized_user_symptoms.hex()[
:INPUT_BROWSER_LIMIT
]
return {
error_box3: gr.update(visible=False),
user_vect_box2: user_symptoms,
quant_vect_box: quant_user_symptoms,
enc_vect_box: encrypted_quantized_user_symptoms_shorten_hex,
}
def send_input_fn(user_id: str, user_symptoms: np.ndarray) -> Dict:
"""Send the encrypted data and the evaluation key to the server.
Args:
user_id (int): The current user's ID
user_symptoms (numpy.ndarray): The user symptoms
"""
if is_nan(user_id) or is_nan(user_symptoms):
return {
error_box4: gr.update(
visible=True,
value="Please ensure that the evaluation key has been generated "
"and the symptoms have been submitted before sending the data to the server",
)
}
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_symptoms"
if not evaluation_key_path.is_file():
print(
"Error Encountered While Sending Data to the Server: "
f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
)
return {error_box4: gr.update(visible=True, value="Please generate the private key first.")}
if not encrypted_input_path.is_file():
print(
"Error Encountered While Sending Data to the Server: The data has not been encrypted "
f"correctly on the client side - {encrypted_input_path.is_file()=}"
)
return {
error_box4: gr.update(
visible=True,
value="Please encrypt the data with the private key first.",
),
}
# Define the data and files to post
data = {
"user_id": user_id,
"filter": user_symptoms,
}
files = [
("files", open(encrypted_input_path, "rb")),
("files", open(evaluation_key_path, "rb")),
]
# Send the encrypted input and evaluation key to the server
url = SERVER_URL + "send_input"
with requests.post(
url=url,
data=data,
files=files,
) as response:
print(f"Sending Data: {response.ok=}")
return {error_box4: gr.update(visible=False), srv_resp_send_data_box: "Data sent"}
def run_fhe_fn(user_id: str) -> Dict:
"""Send the encrypted input as well as the evaluation key to the server.
Args:
user_id (int): The current user's ID.
"""
if is_nan(user_id): # or is_nan(user_symptoms):
return {
error_box5: gr.update(
visible=True,
value="Please ensure that the evaluation key has been generated "
"and the symptoms have been submitted before sending the data to the server",
)
}
data = {
"user_id": user_id,
}
# Trigger the FHE execution on the encrypted previously sent
url = SERVER_URL + "run_fhe"
with requests.post(
url=url,
data=data,
) as response:
if not response.ok:
return {
error_box5: gr.update(visible=True, value="Please wait."),
fhe_execution_time_box: gr.update(visible=True),
}
else:
print(f"response.ok: {response.ok}, {response.json()} - Computed")
return {
error_box5: gr.update(visible=False),
fhe_execution_time_box: gr.update(value=f"{response.json()} seconds"),
}
def get_output_fn(user_id: str, user_symptoms: np.ndarray) -> Dict:
"""Retreive the encrypted data from the server.
Args:
user_id (int): The current user's ID
user_symptoms (numpy.ndarray): The user symptoms
"""
if is_nan(user_id) or is_nan(user_symptoms):
return {
error_box6: gr.update(
visible=True,
value="Please ensure that the evaluation key has been generated "
"and the symptoms have been submitted before sending the data to the server",
)
}
data = {
"user_id": user_id,
}
# Retrieve the encrypted output
url = SERVER_URL + "get_output"
with requests.post(
url=url,
data=data,
) as response:
if response.ok:
print(f"Receive Data: {response.ok=}")
encrypted_output = response.content
# Save the encrypted output to bytes in a file as it is too large to pass through
# regular Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output"
with encrypted_output_path.open("wb") as f:
f.write(encrypted_output)
return {error_box6: gr.update(visible=False), srv_resp_retrieve_data_box: "Data received"}
def decrypt_fn(user_id: str, user_symptoms: np.ndarray) -> Dict:
"""Dencrypt the data on the `Client Side`.
Args:
user_id (int): The current user's ID
user_symptoms (numpy.ndarray): The user symptoms
Returns:
Decrypted output
"""
if is_nan(user_id) or is_nan(user_symptoms):
return {
error_box7: gr.update(
visible=True,
value="Please ensure that the symptoms have been submitted and the evaluation "
"key has been generated",
)
}
# Get the encrypted output path
encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output"
if not encrypted_output_path.is_file():
print("Error in decryption step: Please run the FHE execution, first.")
return {
error_box7: gr.update(
visible=True,
value="Please ensure that the symptoms have been submitted, the evaluation "
"key has been generated and step 5 and 6 have been performed on the Server "
"side before decrypting the prediction",
)
}
# Load the encrypted output as bytes
with encrypted_output_path.open("rb") as f:
encrypted_output = f.read()
# Retrieve the client API
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
client.load()
# Deserialize, decrypt and post-process the encrypted output
output = client.deserialize_decrypt_dequantize(encrypted_output)
return {
error_box7: gr.update(visible=False),
decrypt_target_box: get_disease_name(output.argmax()),
}
def clear_all_btn():
"""Clear all the box outputs."""
clean_directory()
return {
# disease_box: None,
user_id_box: None,
user_vect_box1: None,
user_vect_box2: None,
quant_vect_box: None,
enc_vect_box: None,
key_box: None,
key_len_box: None,
fhe_execution_time_box: None,
decrypt_target_box: None,
error_box7: gr.update(visible=False),
error_box1: gr.update(visible=False),
error_box2: gr.update(visible=False),
error_box3: gr.update(visible=False),
error_box4: gr.update(visible=False),
error_box5: gr.update(visible=False),
error_box6: gr.update(visible=False),
srv_resp_send_data_box: None,
srv_resp_retrieve_data_box: None,
**{box: None for box in check_boxes},
}
CSS = """
#them {color: orange}
#them {font-size: 25px}
#them {font-weight: bold}
.gradio-container {background-color: white}
.feedback {font-size: 3px !important}
/* #them {text-align: center} */
"""
if __name__ == "__main__":
print("Starting demo ...")
clean_directory()
(X_train, X_test), (y_train, y_test) = load_data()
valid_columns = X_train.columns.to_list()
with gr.Blocks(css=CSS) as demo:
# Link + images
gr.Markdown(
"""
<p align="center">
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
</p>
<h2 align="center">Health Prediction On Encrypted Data Using Fully Homomorphic Encryption.</h2>
<p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a>
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
</p>
<p align="center">
<img width="100%" height="30%" src="https://raw.githubusercontent.com/kcelia/Img/main/health_prediction_img.png">
</p>
"""
)
with gr.Tabs(elem_id="them"):
with gr.TabItem("1. Symptoms Selection") as feature:
gr.Markdown("<span style='color:orange'>Client Side</span>")
gr.Markdown("## Step 1: Provide your symptoms")
gr.Markdown(
"You can provide your health condition either by checking "
"the symptoms available in the boxes or by selecting a known disease with "
"its predefined set of symptoms."
)
# Box symptoms
check_boxes = []
for i, category in enumerate(SYMPTOMS_LIST):
with gr.Accordion(
pretty_print(category.keys()), open=False, elem_classes="feedback"
) as accordion:
check_box = gr.CheckboxGroup(
pretty_print(category.values()),
label=pretty_print(category.keys()),
info=f"Symptoms related to `{pretty_print(category.values())}`",
)
check_boxes.append(check_box)
error_box1 = gr.Textbox(label="Error", visible=False)
# Default disease, picked from the dataframe
# disease_box = gr.Dropdown(list(sorted(set(df_test["prognosis"]))),
# label="Disease:")
# disease_box.change(
# fn=fill_in_fn,
# inputs=[disease_box, *check_boxes],
# outputs=[*check_boxes],
# )
# User symptom vector
user_vect_box1 = gr.Textbox(label="User Symptoms Vector:", interactive=False)
# Submit botton
submit_button = gr.Button("Submit")
with gr.Row():
# Clear botton
clear_button = gr.Button("Reset")
submit_button.click(
fn=get_features_fn,
inputs=[*check_boxes],
outputs=[user_vect_box1, error_box1],
)
with gr.TabItem("2. Data Encryption") as encryption_tab:
gr.Markdown("<span style='color:orange'>Client Side</span>")
gr.Markdown("## Step 2: Generate the keys")
gen_key_btn = gr.Button("Generate the keys")
error_box2 = gr.Textbox(label="Error", visible=False)
with gr.Row():
# User ID
with gr.Column(scale=1, min_width=600):
user_id_box = gr.Textbox(label="User ID:", interactive=False)
# Evaluation key size
with gr.Column(scale=1, min_width=600):
key_len_box = gr.Textbox(label="Evaluation Key Size:", interactive=False)
# Evaluation key (truncated)
with gr.Column(scale=2, min_width=600):
key_box = gr.Textbox(
label="Evaluation key (truncated):",
max_lines=3,
interactive=False,
)
gen_key_btn.click(
key_gen_fn,
inputs=user_vect_box1,
outputs=[
key_box,
user_id_box,
key_len_box,
error_box2,
],
)
gr.Markdown("## Step 3: Encrypt the symptoms")
encrypt_btn = gr.Button("Encrypt the symptoms with the private key")
error_box3 = gr.Textbox(label="Error", visible=False)
with gr.Row():
with gr.Column(scale=1, min_width=600):
user_vect_box2 = gr.Textbox(
label="User Symptoms Vector:", interactive=False
)
with gr.Column(scale=1, min_width=600):
quant_vect_box = gr.Textbox(label="Quantized Vector:", interactive=False)
with gr.Column(scale=1, min_width=600):
enc_vect_box = gr.Textbox(
label="Encrypted Vector:", max_lines=3, interactive=False
)
encrypt_btn.click(
encrypt_fn,
inputs=[user_vect_box1, user_id_box],
outputs=[
user_vect_box2,
quant_vect_box,
enc_vect_box,
error_box3,
],
)
gr.Markdown(
"## Step 4: Send the encrypted data to the "
"<span style='color:orange'>Server Side</span>"
)
error_box4 = gr.Textbox(label="Error", visible=False)
with gr.Row().style(equal_height=False):
with gr.Column(scale=4):
send_input_btn = gr.Button("Send the encrypted data")
with gr.Column(scale=1):
srv_resp_send_data_box = gr.Checkbox(
label="Data Sent", show_label=False, interactive=False
)
send_input_btn.click(
send_input_fn,
inputs=[user_id_box, user_vect_box1],
outputs=[error_box4, srv_resp_send_data_box],
)
with gr.TabItem("3. FHE execution") as fhe_tab:
gr.Markdown("<span style='color:orange'>Client Side</span>")
gr.Markdown("## Step 5: Run the FHE evaluation")
run_fhe_btn = gr.Button("Run the FHE evaluation")
error_box5 = gr.Textbox(label="Error", visible=False)
fhe_execution_time_box = gr.Textbox(
label="Total FHE Execution Time:", interactive=False
)
run_fhe_btn.click(
run_fhe_fn,
inputs=[user_id_box],
outputs=[fhe_execution_time_box, error_box5],
)
with gr.TabItem("4. Data Decryption") as decryption_tab:
gr.Markdown("<span style='color:orange'>Client Side</span>")
gr.Markdown(
"## Step 6: Get the data from the <span style='color:orange'>Server Side</span>"
)
error_box6 = gr.Textbox(label="Error", visible=False)
with gr.Row().style(equal_height=True):
with gr.Column(scale=4):
get_output_btn = gr.Button("Get data")
with gr.Column(scale=1):
srv_resp_retrieve_data_box = gr.Checkbox(
label="Data Received", show_label=False, interactive=False
)
get_output_btn.click(
get_output_fn,
inputs=[user_id_box, user_vect_box1],
outputs=[srv_resp_retrieve_data_box, error_box6],
)
gr.Markdown("## Step 7: Decrypt the output")
decrypt_target_btn = gr.Button("Decrypt the output")
error_box7 = gr.Textbox(label="Error", visible=False)
decrypt_target_box = gr.Textbox(abel="Decrypted Output:", interactive=False)
decrypt_target_btn.click(
decrypt_fn,
inputs=[user_id_box, user_vect_box1],
outputs=[decrypt_target_box, error_box7],
)
clear_button.click(
clear_all_btn,
outputs=[
user_vect_box1,
user_vect_box2,
# disease_box,
error_box1,
error_box2,
error_box3,
error_box4,
error_box5,
error_box6,
error_box7,
user_id_box,
key_len_box,
key_box,
quant_vect_box,
enc_vect_box,
srv_resp_send_data_box,
srv_resp_retrieve_data_box,
fhe_execution_time_box,
decrypt_target_box,
*check_boxes,
],
)
demo.launch()