File size: 12,051 Bytes
21c7197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
"Filter definitions, with pre-processing, post-processing and compilation methods."
import json
import numpy as np
import torch
from common import AVAILABLE_FILTERS
from concrete.numpy.compilation.compiler import Compiler
from torch import nn
from concrete.ml.common.debugging.custom_assert import assert_true
from concrete.ml.common.utils import generate_proxy_function
from concrete.ml.onnx.convert import get_equivalent_numpy_forward
from concrete.ml.torch.numpy_module import NumpyModule
from concrete.ml.version import __version__ as CML_VERSION
# Add a "black and white" filter
# FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/2277
class _TorchIdentity(nn.Module):
"""Torch identity model."""
def forward(self, x):
"""Identity forward pass.
Args:
x (torch.Tensor): The input image.
Returns:
x (torch.Tensor): The input image.
"""
return x
class _TorchInverted(nn.Module):
"""Torch inverted model."""
def forward(self, x):
"""Forward pass for inverting an image's colors.
Args:
x (torch.Tensor): The input image.
Returns:
torch.Tensor: The (color) inverted image.
"""
return 255 - x
class _TorchRotate(nn.Module):
"""Torch rotated model."""
def forward(self, x):
"""Forward pass for rotating an image.
Args:
x (torch.Tensor): The input image.
Returns:
torch.Tensor: The rotated image.
"""
return x.transpose(2, 3)
class _TorchConv2D(nn.Module):
"""Torch model for applying a single 2D convolution operator on images."""
def __init__(self, kernel, n_in_channels=3, n_out_channels=3, groups=1):
"""Initializing the filter
Args:
kernel (np.ndarray): The convolution kernel to consider.
"""
super().__init__()
self.kernel = kernel
self.n_out_channels = n_out_channels
self.n_in_channels = n_in_channels
self.groups = groups
def forward(self, x):
"""Forward pass for filtering the image using a 2D kernel.
Args:
x (torch.Tensor): The input image.
Returns:
torch.Tensor: The filtered image.
"""
# Define the convolution parameters
stride = 1
kernel_shape = self.kernel.shape
# Ensure the kernel has a proper shape
# If the kernel has a 1D shape, a (1, 1) kernel is used for each in_channels
if len(kernel_shape) == 1:
kernel = self.kernel.reshape(
self.n_out_channels,
self.n_in_channels // self.groups,
1,
1,
)
# Else, if the kernel has a 2D shape, a single (Kw, Kh) kernel is used on all in_channels
elif len(kernel_shape) == 2:
kernel = self.kernel.expand(
self.n_out_channels,
self.n_in_channels // self.groups,
kernel_shape[0],
kernel_shape[1],
)
else:
raise ValueError(
"Wrong kernel shape, only 1D or 2D kernels are accepted. Got kernel of shape "
f"{kernel_shape}"
)
return nn.functional.conv2d(x, kernel, stride=stride, groups=self.groups)
class Filter:
"""Filter class used in the app."""
def __init__(self, image_filter="inverted"):
"""Initializing the filter class using a given filter.
Most filters can be found at https://en.wikipedia.org/wiki/Kernel_(image_processing).
Args:
image_filter (str): The filter to consider. Default to "inverted".
"""
assert_true(
image_filter in AVAILABLE_FILTERS,
f"Unsupported image filter or transformation. Expected one of {*AVAILABLE_FILTERS,}, "
f"but got {image_filter}",
)
self.filter = image_filter
self.divide = None
self.repeat_out_channels = False
if image_filter == "identity":
self.torch_model = _TorchIdentity()
elif image_filter == "inverted":
self.torch_model = _TorchInverted()
elif image_filter == "rotate":
self.torch_model = _TorchRotate()
elif image_filter == "black and white":
# Define the grayscale weights (RGB order)
# These weights were used in PAL and NTSC video systems and can be found at
# https://en.wikipedia.org/wiki/Grayscale
# There are initially supposed to be float weights (0.299, 0.587, 0.114), with
# 0.299 + 0.587 + 0.114 = 1
# However, since FHE computations require weights to be integers, we first multiply
# these by a factor of 1000. The output image's values are then divided by 1000 in
# post-processing in order to retrieve the correct result
kernel = torch.tensor([299, 587, 114])
self.torch_model = _TorchConv2D(kernel, n_out_channels=1, groups=1)
# Division value for post-processing
self.divide = 1000
# Grayscaled image needs to be put in RGB format for Gradio display
self.repeat_out_channels = True
elif image_filter == "blur":
kernel = torch.ones((3, 3), dtype=torch.int64)
self.torch_model = _TorchConv2D(kernel, n_out_channels=3, groups=3)
# Division value for post-processing
self.divide = 9
elif image_filter == "sharpen":
kernel = torch.tensor(
[
[0, -1, 0],
[-1, 5, -1],
[0, -1, 0],
]
)
self.torch_model = _TorchConv2D(kernel, n_out_channels=3, groups=3)
elif image_filter == "ridge detection":
# Make the filter properly grayscaled, as it is commonly used
# FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/2265
kernel = torch.tensor(
[
[-1, -1, -1],
[-1, 9, -1],
[-1, -1, -1],
]
)
self.torch_model = _TorchConv2D(kernel, n_out_channels=1, groups=1)
# Ridge detection is usually displayed as a grayscaled image, which needs to be put in
# RGB format for Gradio display
self.repeat_out_channels = True
self.onnx_model = None
self.fhe_circuit = None
def compile(self, inputset, onnx_model=None):
"""Compile the model using an inputset.
Args:
inputset (List[np.ndarray]): The set of images to use for compilation
onnx_model (onnx.ModelProto): The loaded onnx model to consider. If None, it will be
generated automatically using a NumpyModule. Default to None.
"""
# Reshape the inputs found in inputset. This is done because Torch and Numpy don't follow
# the same shape conventions.
inputset = tuple(
np.expand_dims(input.transpose(2, 0, 1), axis=0).astype(np.int64) for input in inputset
)
# If no onnx model was given, generate a new one.
if onnx_model is None:
numpy_module = NumpyModule(
self.torch_model,
dummy_input=torch.from_numpy(inputset[0]),
)
onnx_model = numpy_module.onnx_model
# Get the proxy function and parameter mappings for initializing the compiler
self.onnx_model = onnx_model
numpy_filter = get_equivalent_numpy_forward(onnx_model)
numpy_filter_proxy, parameters_mapping = generate_proxy_function(numpy_filter, ["inputs"])
compiler = Compiler(
numpy_filter_proxy,
{parameters_mapping["inputs"]: "encrypted"},
)
# Compile the filter
self.fhe_circuit = compiler.compile(inputset)
return self.fhe_circuit
def pre_processing(self, input_image):
"""Processing that needs to be applied before encryption.
Args:
input_image (np.ndarray): The image to pre-process
Returns:
input_image (np.ndarray): The pre-processed image
"""
# Reshape the inputs found in inputset. This is done because Torch and Numpy don't follow
# the same shape conventions.
input_image = np.expand_dims(input_image.transpose(2, 0, 1), axis=0).astype(np.int64)
return input_image
def post_processing(self, output_image):
"""Processing that needs to be applied after decryption.
Args:
input_image (np.ndarray): The decrypted image to post-process
Returns:
input_image (np.ndarray): The post-processed image
"""
# Apply a division if needed
if self.divide is not None:
output_image //= self.divide
# Clip the image's values to proper RGB standards as filters don't handle such constraints
output_image = output_image.clip(0, 255)
# Reshape the inputs found in inputset. This is done because Torch and Numpy don't follow
# the same shape conventions.
output_image = output_image.transpose(0, 2, 3, 1).squeeze(0)
# Grayscaled image needs to be put in RGB format for Gradio display
if self.repeat_out_channels:
output_image = output_image.repeat(3, axis=2)
return output_image
@classmethod
def from_json(cls, json_path):
"""Instantiate a filter using a json file.
Args:
json_path (Union[str, pathlib.Path]): Path to the json file.
Returns:
model (Filter): The instantiated filter class.
"""
# Load the parameters from the json file
with open(json_path, "r", encoding="utf-8") as f:
serialized_processing = json.load(f)
# Make sure the version in serialized_model is the same as CML_VERSION
assert_true(
serialized_processing["cml_version"] == CML_VERSION,
f"The version of Concrete ML library ({CML_VERSION}) is different "
f"from the one used to save the model ({serialized_processing['cml_version']}). "
"Please update to the proper Concrete ML version.",
)
# Initialize the model
model = cls(image_filter=serialized_processing["model_filter"])
return model
def to_json(self, path_dir, file_name="serialized_processing"):
"""Export the parameters to a json file.
Args:
path_dir (Union[str, pathlib.Path]): The path to consider when saving the file.
file_name (str): The file name
"""
# Serialize the parameters
serialized_processing = {
"model_filter": self.filter,
}
serialized_processing = self._clean_dict_types_for_json(serialized_processing)
# Add the version of the current CML library
serialized_processing["cml_version"] = CML_VERSION
# Save the json file
with open(path_dir / f"{file_name}.json", "w", encoding="utf-8") as f:
json.dump(serialized_processing, f)
def _clean_dict_types_for_json(self, d: dict) -> dict:
"""Clean all values in the dict to be json serializable.
Args:
d (Dict): The dict to clean
Returns:
Dict: The cleaned dict
"""
key_to_delete = []
for key, value in d.items():
if isinstance(value, list) and len(value) > 0 and isinstance(value[0], dict):
d[key] = [self._clean_dict_types_for_json(v) for v in value]
elif isinstance(value, dict):
d[key] = self._clean_dict_types_for_json(value)
elif isinstance(value, (np.generic, np.ndarray)):
d[key] = d[key].tolist()
for key in key_to_delete:
d.pop(key)
return d
|