|
"""A local gradio app that filters images using FHE.""" |
|
|
|
import os |
|
import shutil |
|
import subprocess |
|
import time |
|
|
|
import gradio as gr |
|
import numpy |
|
import requests |
|
from common import ( |
|
AVAILABLE_FILTERS, |
|
CLIENT_TMP_PATH, |
|
EXAMPLES, |
|
FILTERS_PATH, |
|
INPUT_SHAPE, |
|
KEYS_PATH, |
|
WRONG_KEYS_PATH, |
|
REPO_DIR, |
|
SERVER_URL, |
|
) |
|
from custom_client_server import CustomFHEClient, CustomFHEServer |
|
|
|
|
|
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR) |
|
time.sleep(3) |
|
|
|
|
|
def decrypt_output_with_wrong_key(encrypted_image, image_filter): |
|
filter_path = FILTERS_PATH / f"{image_filter}/deployment" |
|
|
|
wrong_client = CustomFHEClient(filter_path, WRONG_KEYS_PATH) |
|
wrong_client.generate_private_and_evaluation_keys(force=True) |
|
|
|
output_image = wrong_client.deserialize_decrypt_post_process(encrypted_image) |
|
|
|
return output_image |
|
|
|
|
|
def shorten_bytes_object(bytes_object, limit=500): |
|
"""Shorten the input bytes object to a given length. |
|
|
|
Encrypted data is too large for displaying it in the browser using Gradio. This function |
|
provides a shorten representation of it. |
|
|
|
Args: |
|
bytes_object (bytes): The input to shorten |
|
limit (int): The length to consider. Default to 500. |
|
|
|
Returns: |
|
Any: The fitted model. |
|
|
|
""" |
|
|
|
shift = 100 |
|
return bytes_object[shift : limit + shift].hex() |
|
|
|
|
|
def get_client(user_id, image_filter): |
|
"""Get the client API. |
|
|
|
Args: |
|
user_id (int): The current user's ID. |
|
image_filter (str): The filter chosen by the user |
|
|
|
Returns: |
|
CustomFHEClient: The client API. |
|
""" |
|
return CustomFHEClient( |
|
FILTERS_PATH / f"{image_filter}/deployment", KEYS_PATH / f"{image_filter}_{user_id}" |
|
) |
|
|
|
|
|
def get_client_file_path(name, user_id, image_filter): |
|
"""Get the correct temporary file path for the client. |
|
|
|
Args: |
|
name (str): The desired file name. |
|
user_id (int): The current user's ID. |
|
image_filter (str): The filter chosen by the user |
|
|
|
Returns: |
|
pathlib.Path: The file path. |
|
""" |
|
return CLIENT_TMP_PATH / f"{name}_{image_filter}_{user_id}" |
|
|
|
|
|
def clean_temporary_files(n_keys=20): |
|
"""Clean keys and encrypted images. |
|
|
|
A maximum of n_keys keys are allowed to be stored. Once this limit is reached, the oldest are |
|
deleted. |
|
|
|
Args: |
|
n_keys (int): The maximum number of keys to be stored. Default to 20. |
|
|
|
""" |
|
|
|
list_files = sorted(KEYS_PATH.iterdir(), key=os.path.getmtime) |
|
|
|
|
|
user_ids = [] |
|
if len(list_files) > n_keys: |
|
n_files_to_delete = len(list_files) - n_keys |
|
for p in list_files[:n_files_to_delete]: |
|
user_ids.append(p.name) |
|
shutil.rmtree(p) |
|
|
|
|
|
list_files_tmp = CLIENT_TMP_PATH.iterdir() |
|
|
|
|
|
for file in list_files_tmp: |
|
for user_id in user_ids: |
|
if file.name.endswith(f"{user_id}.npy"): |
|
file.unlink() |
|
|
|
|
|
def keygen(image_filter): |
|
"""Generate the private key associated to a filter. |
|
|
|
Args: |
|
image_filter (str): The current filter to consider. |
|
|
|
Returns: |
|
(user_id, True) (Tuple[int, bool]): The current user's ID and a boolean used for visual display. |
|
|
|
""" |
|
|
|
clean_temporary_files() |
|
|
|
|
|
user_id = numpy.random.randint(0, 2**32) |
|
|
|
|
|
client = get_client(user_id, image_filter) |
|
|
|
|
|
client.generate_private_and_evaluation_keys(force=True) |
|
|
|
|
|
|
|
|
|
evaluation_key = client.get_serialized_evaluation_keys() |
|
|
|
|
|
private_key_path = next(client.key_dir.iterdir()) / "0_0/secretKey_big" |
|
private_key_size = private_key_path.stat().st_size / 1000 |
|
|
|
|
|
|
|
evaluation_key_path = get_client_file_path("evaluation_key", user_id, image_filter) |
|
|
|
with evaluation_key_path.open("wb") as evaluation_key_file: |
|
evaluation_key_file.write(evaluation_key) |
|
|
|
return (user_id, True, private_key_size) |
|
|
|
|
|
def encrypt(user_id, input_image, image_filter): |
|
"""Encrypt the given image for a specific user and filter. |
|
|
|
Args: |
|
user_id (int): The current user's ID. |
|
input_image (numpy.ndarray): The image to encrypt. |
|
image_filter (str): The current filter to consider. |
|
|
|
Returns: |
|
(input_image, encrypted_image_short) (Tuple[bytes]): The encrypted image and one of its |
|
representation. |
|
|
|
""" |
|
if user_id == "": |
|
raise gr.Error("Please generate the private key first.") |
|
|
|
if input_image is None: |
|
raise gr.Error("Please choose an image first.") |
|
|
|
|
|
client = get_client(user_id, image_filter) |
|
|
|
|
|
encrypted_image = client.pre_process_encrypt_serialize(input_image) |
|
|
|
|
|
encrypted_input_size = len(encrypted_image) / 1000000 |
|
|
|
|
|
|
|
encrypted_image_path = get_client_file_path("encrypted_image", user_id, image_filter) |
|
|
|
with encrypted_image_path.open("wb") as encrypted_image_file: |
|
encrypted_image_file.write(encrypted_image) |
|
|
|
|
|
encrypted_image_short = shorten_bytes_object(encrypted_image) |
|
|
|
return (input_image, encrypted_image_short, encrypted_input_size) |
|
|
|
|
|
def send_input(user_id, image_filter): |
|
"""Send the encrypted input image as well as the evaluation key to the server. |
|
|
|
Args: |
|
user_id (int): The current user's ID. |
|
image_filter (str): The current filter to consider. |
|
""" |
|
|
|
evaluation_key_path = get_client_file_path("evaluation_key", user_id, image_filter) |
|
|
|
if user_id == "" or not evaluation_key_path.is_file(): |
|
raise gr.Error("Please generate the private key first.") |
|
|
|
encrypted_input_path = get_client_file_path("encrypted_image", user_id, image_filter) |
|
|
|
if not encrypted_input_path.is_file(): |
|
raise gr.Error("Please generate the private key and then encrypt an image first.") |
|
|
|
|
|
data = { |
|
"user_id": user_id, |
|
"filter": image_filter, |
|
} |
|
|
|
files = [ |
|
("files", open(encrypted_input_path, "rb")), |
|
("files", open(evaluation_key_path, "rb")), |
|
] |
|
|
|
|
|
url = SERVER_URL + "send_input" |
|
with requests.post( |
|
url=url, |
|
data=data, |
|
files=files, |
|
) as response: |
|
return response.ok |
|
|
|
|
|
def run_fhe(user_id, image_filter): |
|
"""Apply the filter on the encrypted image previously sent using FHE. |
|
|
|
Args: |
|
user_id (int): The current user's ID. |
|
image_filter (str): The current filter to consider. |
|
""" |
|
data = { |
|
"user_id": user_id, |
|
"filter": image_filter, |
|
} |
|
|
|
|
|
url = SERVER_URL + "run_fhe" |
|
with requests.post( |
|
url=url, |
|
data=data, |
|
) as response: |
|
if response.ok: |
|
return response.json() |
|
else: |
|
raise gr.Error("Please wait for the input image to be sent to the server.") |
|
|
|
|
|
def get_output(user_id, image_filter): |
|
"""Retrieve the encrypted output image. |
|
|
|
Args: |
|
user_id (int): The current user's ID. |
|
image_filter (str): The current filter to consider. |
|
|
|
Returns: |
|
encrypted_output_image_short (bytes): A representation of the encrypted result. |
|
|
|
""" |
|
data = { |
|
"user_id": user_id, |
|
"filter": image_filter, |
|
} |
|
|
|
|
|
url = SERVER_URL + "get_output" |
|
with requests.post( |
|
url=url, |
|
data=data, |
|
) as response: |
|
if response.ok: |
|
encrypted_output = response.content |
|
|
|
|
|
encrypted_output_size = len(encrypted_output) / 1000000 |
|
|
|
|
|
|
|
encrypted_output_path = get_client_file_path("encrypted_output", user_id, image_filter) |
|
|
|
with encrypted_output_path.open("wb") as encrypted_output_file: |
|
encrypted_output_file.write(encrypted_output) |
|
|
|
|
|
output_image_representation = decrypt_output_with_wrong_key(encrypted_output, image_filter) |
|
|
|
return output_image_representation, encrypted_output_size |
|
else: |
|
raise gr.Error("Please wait for the FHE execution to be completed.") |
|
|
|
|
|
def decrypt_output(user_id, image_filter): |
|
"""Decrypt the result. |
|
|
|
Args: |
|
user_id (int): The current user's ID. |
|
image_filter (str): The current filter to consider. |
|
|
|
Returns: |
|
(output_image, False, False) ((Tuple[numpy.ndarray, bool, bool]): The decrypted output, as |
|
well as two booleans used for resetting Gradio checkboxes |
|
|
|
""" |
|
if user_id == "": |
|
raise gr.Error("Please generate the private key first.") |
|
|
|
|
|
encrypted_output_path = get_client_file_path("encrypted_output", user_id, image_filter) |
|
|
|
if not encrypted_output_path.is_file(): |
|
raise gr.Error("Please run the FHE execution first.") |
|
|
|
|
|
with encrypted_output_path.open("rb") as encrypted_output_file: |
|
encrypted_output_image = encrypted_output_file.read() |
|
|
|
|
|
client = get_client(user_id, image_filter) |
|
|
|
|
|
output_image = client.deserialize_decrypt_post_process(encrypted_output_image) |
|
|
|
return output_image, False, False |
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
|
|
print("Starting the demo...") |
|
with demo: |
|
gr.Markdown( |
|
""" |
|
<p align="center"> |
|
</p> |
|
<p align="center"> |
|
</p> |
|
""" |
|
) |
|
|
|
gr.Markdown("## Client side") |
|
gr.Markdown("### Step 1. Upload an image. ") |
|
gr.Markdown( |
|
f"The image will automatically be resized to shape ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]})." |
|
"The image displayed here is however using its original resolution. The true image used " |
|
"in this demo can be seen in Step. 8." |
|
) |
|
with gr.Row(): |
|
input_image = gr.Image( |
|
label="Upload an image here.", shape=INPUT_SHAPE, source="upload", interactive=True |
|
) |
|
|
|
examples = gr.Examples( |
|
examples=EXAMPLES, inputs=[input_image], examples_per_page=5, label="Examples to use." |
|
) |
|
|
|
gr.Markdown("### Step 2. Choose your filter") |
|
image_filter = gr.Dropdown( |
|
choices=AVAILABLE_FILTERS, value="inverted", label="Choose your filter", interactive=True |
|
) |
|
|
|
gr.Markdown("#### Notes") |
|
gr.Markdown( |
|
""" |
|
- The private key is used to encrypt and decrypt the data and shall never be shared. |
|
- No public key are required for these filter operators. |
|
""" |
|
) |
|
|
|
gr.Markdown("### Step 3. Generate the private key.") |
|
with gr.Row(): |
|
keygen_button = gr.Button("Generate the private key.") |
|
|
|
keygen_checkbox = gr.Checkbox(label="Private key generated:", interactive=False) |
|
|
|
private_key_size = gr.Number( |
|
label="Private key size (in kB):", value=0, precision=1, interactive=False |
|
) |
|
|
|
user_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False) |
|
|
|
gr.Markdown("### Step 4. Encrypt the image using FHE.") |
|
with gr.Row(): |
|
encrypt_button = gr.Button("Encrypt the image using FHE.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
encrypted_input = gr.Textbox( |
|
label="Encrypted input representation:", max_lines=2, interactive=False |
|
) |
|
|
|
encrypted_input_size = gr.Number( |
|
label="Encrypted input size (in MB):", value=0, precision=1, interactive=False |
|
) |
|
|
|
gr.Markdown("## Server side") |
|
gr.Markdown( |
|
"The encrypted value is received by the server. The server can then compute the filter " |
|
"directly over encrypted values. Once the computation is finished, the server returns " |
|
"the encrypted results to the client." |
|
) |
|
|
|
gr.Markdown("### Step 5. Send the encrypted image to the server.") |
|
with gr.Row(): |
|
send_input_button = gr.Button("Send the encrypted image to the server.") |
|
|
|
send_input_checkbox = gr.Checkbox(label="Encrypted image sent.", interactive=False) |
|
|
|
gr.Markdown("### Step 6. Run FHE execution.") |
|
with gr.Row(): |
|
execute_fhe_button = gr.Button("Run FHE execution.") |
|
|
|
fhe_execution_time = gr.Textbox( |
|
label="Total FHE execution time (in seconds):", max_lines=1, interactive=False |
|
) |
|
|
|
gr.Markdown("### Step 7. Receive the encrypted output image from the server.") |
|
gr.Markdown( |
|
"The image displayed here is the encrypted result sent by the server which has been " |
|
"decrypted using a different private key. This is only used to visually represent an " |
|
"encrypted image." |
|
) |
|
with gr.Row(): |
|
get_output_button = gr.Button("Receive the encrypted output image from the server.") |
|
|
|
encrypted_output_representation = gr.Image( |
|
label=f"Encrypted output representation ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}):", interactive=False |
|
) |
|
encrypted_output_representation.style(height=256, width=256) |
|
|
|
encrypted_output_size = gr.Number( |
|
label="Encrypted output size (in MB):", value=0, precision=1, interactive=False |
|
) |
|
|
|
gr.Markdown("## Client side") |
|
gr.Markdown( |
|
"The encrypted output is sent back to client, who can finally decrypt it with its " |
|
"private key. Only the client is aware of the original image and its transformed version." |
|
) |
|
|
|
gr.Markdown("### Step 8. Decrypt the output") |
|
gr.Markdown( |
|
"The image displayed on the left is the input image used during the demo. The output image " |
|
"can be seen on the right." |
|
) |
|
decrypt_button = gr.Button("Decrypt the output") |
|
|
|
|
|
with gr.Row(): |
|
original_image = gr.Image( |
|
input_image.value, |
|
label=f"Input image ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}):", |
|
interactive=False, |
|
) |
|
original_image.style(height=256, width=256) |
|
|
|
output_image = gr.Image( |
|
label=f"Output image ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}):", interactive=False |
|
) |
|
output_image.style(height=256, width=256) |
|
|
|
|
|
keygen_button.click( |
|
keygen, |
|
inputs=[image_filter], |
|
outputs=[user_id, keygen_checkbox, private_key_size], |
|
) |
|
|
|
|
|
encrypt_button.click( |
|
encrypt, |
|
inputs=[user_id, input_image, image_filter], |
|
outputs=[original_image, encrypted_input, encrypted_input_size], |
|
) |
|
|
|
|
|
send_input_button.click( |
|
send_input, inputs=[user_id, image_filter], outputs=[send_input_checkbox] |
|
) |
|
|
|
|
|
execute_fhe_button.click(run_fhe, inputs=[user_id, image_filter], outputs=[fhe_execution_time]) |
|
|
|
|
|
get_output_button.click( |
|
get_output, |
|
inputs=[user_id, image_filter], |
|
outputs=[encrypted_output_representation, encrypted_output_size] |
|
) |
|
|
|
|
|
decrypt_button.click( |
|
decrypt_output, |
|
inputs=[user_id, image_filter], |
|
outputs=[output_image, keygen_checkbox, send_input_checkbox], |
|
) |
|
|
|
gr.Markdown( |
|
"The app was built with [Concrete-ML](https://github.com/zama-ai/concrete-ml), a " |
|
"Privacy-Preserving Machine Learning (PPML) open-source set of tools by [Zama](https://zama.ai/). " |
|
"Try it yourself and don't forget to star on Github ⭐." |
|
) |
|
|
|
demo.launch(share=False) |
|
|