File size: 19,510 Bytes
55d914b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# The code is revised from DiT
import os
import torch
import torch.nn as nn
import numpy as np
import math
from typing import Dict
import torch.nn.functional as F

from diffusers.loaders import PeftAdapterMixin
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp
from huggingface_hub import snapshot_download
from safetensors.torch import load_file

from OmniGen.transformer import Phi3Config, Phi3Transformer


def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


class TimestepEmbedder(nn.Module):
    """

    Embeds scalar timesteps into vector representations.

    """
    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """

        Create sinusoidal timestep embeddings.

        :param t: a 1-D Tensor of N indices, one per batch element.

                          These may be fractional.

        :param dim: the dimension of the output.

        :param max_period: controls the minimum frequency of the embeddings.

        :return: an (N, D) Tensor of positional embeddings.

        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
        ).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t, dtype=torch.float32):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
        t_emb = self.mlp(t_freq)
        return t_emb


class FinalLayer(nn.Module):
    """

    The final layer of DiT.

    """
    def __init__(self, hidden_size, patch_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=1):
    """

    grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or

    [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)

    """
    if isinstance(grid_size, int):
        grid_size = (grid_size, grid_size)

    grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
    grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """

    embed_dim: output dimension for each position

    pos: a list of positions to be encoded: size (M,)

    out: (M, D)

    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.
    omega = 1. / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out) # (M, D/2)
    emb_cos = np.cos(out) # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


class PatchEmbedMR(nn.Module):
    """ 2D Image to Patch Embedding

    """
    def __init__(

            self,

            patch_size: int = 2,

            in_chans: int = 4,

            embed_dim: int = 768,

            bias: bool = True,

    ):
        super().__init__()
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)

    def forward(self, x):
        x = self.proj(x)
        x = x.flatten(2).transpose(1, 2)  # NCHW -> NLC
        return x


class Int8Quantized(nn.Module):
    def __init__(self, tensor, scale_factor=None):
        super().__init__()
        if scale_factor is None:
            max_val = torch.max(torch.abs(tensor))
            scale_factor = max_val / 127.0
        # Store quantized weights and scale factor
        self.register_buffer('quantized_weight', torch.round(tensor / scale_factor).to(torch.int8))
        self.register_buffer('scale_factor', torch.tensor(scale_factor))

    def forward(self, dtype=None):
        # Dequantize and convert to specified dtype
        weight = self.quantized_weight.float() * self.scale_factor
        if dtype is not None:
            weight = weight.to(dtype)
        return weight



class QuantizedLinear(nn.Module):
    def __init__(self, weight, bias=None):
        super().__init__()
        self.weight_quantized = Int8Quantized(weight)
        if bias is not None:
            self.register_buffer('bias', bias)
        else:
            self.bias = None

    def forward(self, x):
        # Dequantize weight to match input dtype
        weight = self.weight_quantized(dtype=x.dtype)
        return F.linear(x, weight, self.bias)


class OmniGen(nn.Module, PeftAdapterMixin):
    """

    Diffusion model with a Transformer backbone.

    """
    def __init__(

        self,

        transformer_config: Phi3Config,

        patch_size=2,

        in_channels=4,

        pe_interpolation: float = 1.0,

        pos_embed_max_size: int = 192,

    ):
        super().__init__()

        self.in_channels = in_channels
        self.out_channels = in_channels
        self.patch_size = patch_size
        self.pos_embed_max_size = pos_embed_max_size

        hidden_size = transformer_config.hidden_size

        self.x_embedder = PatchEmbedMR(patch_size, in_channels, hidden_size, bias=True)
        self.input_x_embedder = PatchEmbedMR(patch_size, in_channels, hidden_size, bias=True)

        self.time_token = TimestepEmbedder(hidden_size)
        self.t_embedder = TimestepEmbedder(hidden_size)

        self.pe_interpolation = pe_interpolation
        pos_embed = get_2d_sincos_pos_embed(hidden_size, pos_embed_max_size, interpolation_scale=self.pe_interpolation, base_size=64)
        self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=True)

        self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)

        self.initialize_weights()

        self.llm = Phi3Transformer(config=transformer_config)
        self.llm.config.use_cache = False

    def _quantize_module(self, module):
        """

        Quantize a module to 8-bit precision

        """
        for name, child in module.named_children():
            if isinstance(child, nn.Linear):
                setattr(module, name, QuantizedLinear(child.weight.data, child.bias.data if child.bias is not None else None))
            elif isinstance(child, nn.LayerNorm):
                # Skip quantization for LayerNorm
                continue
            else:
                self._quantize_module(child)

    @classmethod
    def from_pretrained(cls, model_name, quantize=False):  # Add quantize parameter
        if not os.path.exists(model_name):
            cache_folder = os.getenv('HF_HUB_CACHE')
            model_name = snapshot_download(repo_id=model_name,
                                           cache_dir=cache_folder,
                                           ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5'])
        config = Phi3Config.from_pretrained(model_name)
        model = cls(config)
        if os.path.exists(os.path.join(model_name, 'model.safetensors')):
            print("Loading safetensors")
            ckpt = load_file(os.path.join(model_name, 'model.safetensors'))
        else:
            ckpt = torch.load(os.path.join(model_name, 'model.pt'), map_location='cpu')

        # Load weights first
        model.load_state_dict(ckpt)

        # Only quantize if explicitly requested
        if quantize:
            print("Quantizing weights to 8-bit...")
            model._quantize_module(model.llm)

        return model
    def initialize_weights(self):
        assert not hasattr(self, "llama")

        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)
        
        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        w = self.x_embedder.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        nn.init.constant_(self.x_embedder.proj.bias, 0)

        w = self.input_x_embedder.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        nn.init.constant_(self.x_embedder.proj.bias, 0)


        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
        nn.init.normal_(self.time_token.mlp[0].weight, std=0.02)
        nn.init.normal_(self.time_token.mlp[2].weight, std=0.02)

        # Zero-out output layers:
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)

    def unpatchify(self, x, h, w):
        """

        x: (N, T, patch_size**2 * C)

        imgs: (N, H, W, C)

        """
        c = self.out_channels

        x = x.reshape(shape=(x.shape[0], h//self.patch_size, w//self.patch_size, self.patch_size, self.patch_size, c))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], c, h, w))
        return imgs


    def cropped_pos_embed(self, height, width):
        """Crops positional embeddings for SD3 compatibility."""
        if self.pos_embed_max_size is None:
            raise ValueError("`pos_embed_max_size` must be set for cropping.")

        height = height // self.patch_size
        width = width // self.patch_size
        if height > self.pos_embed_max_size:
            raise ValueError(
                f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
            )
        if width > self.pos_embed_max_size:
            raise ValueError(
                f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
            )

        top = (self.pos_embed_max_size - height) // 2
        left = (self.pos_embed_max_size - width) // 2
        spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
        spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
        # print(top, top + height, left, left + width, spatial_pos_embed.size())
        spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
        return spatial_pos_embed


    def patch_multiple_resolutions(self, latents, padding_latent=None, is_input_images:bool=False):
        if isinstance(latents, list):
            return_list = False
            if padding_latent is None:
                padding_latent = [None] * len(latents)
                return_list = True
            patched_latents, num_tokens, shapes = [], [], []
            for latent, padding in zip(latents, padding_latent):
                height, width = latent.shape[-2:]
                if is_input_images:
                    latent = self.input_x_embedder(latent)
                else:
                    latent = self.x_embedder(latent)
                pos_embed = self.cropped_pos_embed(height, width)    
                latent = latent + pos_embed
                if padding is not None:
                    latent = torch.cat([latent, padding], dim=-2)
                patched_latents.append(latent)

                num_tokens.append(pos_embed.size(1))
                shapes.append([height, width])
            if not return_list:
                latents = torch.cat(patched_latents, dim=0)
            else:
                latents = patched_latents
        else:
            height, width = latents.shape[-2:]
            if is_input_images:
                latents = self.input_x_embedder(latents)
            else:
                latents = self.x_embedder(latents)
            pos_embed = self.cropped_pos_embed(height, width)  
            latents = latents + pos_embed
            num_tokens = latents.size(1)
            shapes = [height, width]
        return latents, num_tokens, shapes

    
    def forward(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, padding_latent=None, past_key_values=None, return_past_key_values=True):
        """

        

        """
        input_is_list = isinstance(x, list)
        x, num_tokens, shapes = self.patch_multiple_resolutions(x, padding_latent)
        time_token = self.time_token(timestep, dtype=x[0].dtype).unsqueeze(1)   
        
        if input_img_latents is not None:
            input_latents, _, _ = self.patch_multiple_resolutions(input_img_latents, is_input_images=True)
        if input_ids is not None:
            condition_embeds = self.llm.embed_tokens(input_ids).clone()
            input_img_inx = 0
            for b_inx in input_image_sizes.keys():
                for start_inx, end_inx in input_image_sizes[b_inx]:
                    condition_embeds[b_inx, start_inx: end_inx] = input_latents[input_img_inx]
                    input_img_inx += 1
            if input_img_latents is not None:
                assert input_img_inx == len(input_latents) 

            input_emb = torch.cat([condition_embeds, time_token, x], dim=1)
        else:
            input_emb = torch.cat([time_token, x], dim=1)
        output = self.llm(inputs_embeds=input_emb, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values)
        output, past_key_values = output.last_hidden_state, output.past_key_values
        if input_is_list:
            image_embedding = output[:, -max(num_tokens):]
            time_emb = self.t_embedder(timestep, dtype=x.dtype)
            x = self.final_layer(image_embedding, time_emb)
            latents = []
            for i in range(x.size(0)):
                latent = x[i:i+1, :num_tokens[i]]
                latent = self.unpatchify(latent, shapes[i][0], shapes[i][1])
                latents.append(latent)
        else:
            image_embedding = output[:, -num_tokens:]
            time_emb = self.t_embedder(timestep, dtype=x.dtype)
            x = self.final_layer(image_embedding, time_emb)
            latents = self.unpatchify(x, shapes[0], shapes[1])

        if return_past_key_values:
            return latents, past_key_values
        return latents

    @torch.no_grad()
    def forward_with_cfg(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, cfg_scale, use_img_cfg, img_cfg_scale, past_key_values, use_kv_cache):
        """

        Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.

        """        
        self.llm.config.use_cache = use_kv_cache
        model_out, past_key_values = self.forward(x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, past_key_values=past_key_values, return_past_key_values=True)
        if use_img_cfg:
            cond, uncond, img_cond = torch.split(model_out, len(model_out) // 3, dim=0)
            cond = uncond + img_cfg_scale * (img_cond - uncond) + cfg_scale * (cond - img_cond)
            model_out = [cond, cond, cond]
        else:
            cond, uncond = torch.split(model_out, len(model_out) // 2, dim=0)
            cond = uncond + cfg_scale * (cond - uncond)
            model_out = [cond, cond]
        
        return torch.cat(model_out, dim=0), past_key_values


    @torch.no_grad()
    def forward_with_separate_cfg(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, cfg_scale, use_img_cfg, img_cfg_scale, past_key_values, use_kv_cache, return_past_key_values=True):
        """

        Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.

        """        
        self.llm.config.use_cache = use_kv_cache
        if past_key_values is None:
            past_key_values = [None] * len(attention_mask)

        x = torch.split(x, len(x) // len(attention_mask), dim=0)
        timestep = timestep.to(x[0].dtype)
        timestep = torch.split(timestep, len(timestep) // len(input_ids), dim=0)

        model_out, pask_key_values = [], []
        for i in range(len(input_ids)):
            temp_out, temp_pask_key_values = self.forward(x[i], timestep[i], input_ids[i], input_img_latents[i], input_image_sizes[i], attention_mask[i], position_ids[i], past_key_values[i])
            model_out.append(temp_out)
            pask_key_values.append(temp_pask_key_values)

        if len(model_out) == 3:
            cond, uncond, img_cond = model_out
            cond = uncond + img_cfg_scale * (img_cond - uncond) + cfg_scale * (cond - img_cond)
            model_out = [cond, cond, cond]
        elif len(model_out) == 2:
            cond, uncond = model_out
            cond = uncond + cfg_scale * (cond - uncond)
            model_out = [cond, cond]
        else:
            return model_out[0]
        
        return torch.cat(model_out, dim=0), pask_key_values