|
import threading |
|
from typing import Any |
|
import insightface |
|
|
|
import roop.globals |
|
from roop.typing import Frame, Face |
|
|
|
import cv2 |
|
import numpy as np |
|
from skimage import transform as trans |
|
from roop.capturer import get_video_frame |
|
from roop.utilities import resolve_relative_path, conditional_thread_semaphore |
|
|
|
FACE_ANALYSER = None |
|
|
|
|
|
FACE_SWAPPER = None |
|
|
|
|
|
def get_face_analyser() -> Any: |
|
global FACE_ANALYSER |
|
|
|
with conditional_thread_semaphore(): |
|
if FACE_ANALYSER is None or roop.globals.g_current_face_analysis != roop.globals.g_desired_face_analysis: |
|
model_path = resolve_relative_path('..') |
|
|
|
allowed_modules = roop.globals.g_desired_face_analysis |
|
roop.globals.g_current_face_analysis = roop.globals.g_desired_face_analysis |
|
if roop.globals.CFG.force_cpu: |
|
print("Forcing CPU for Face Analysis") |
|
FACE_ANALYSER = insightface.app.FaceAnalysis( |
|
name="buffalo_l", |
|
root=model_path, providers=["CPUExecutionProvider"],allowed_modules=allowed_modules |
|
) |
|
else: |
|
FACE_ANALYSER = insightface.app.FaceAnalysis( |
|
name="buffalo_l", root=model_path, providers=roop.globals.execution_providers,allowed_modules=allowed_modules |
|
) |
|
FACE_ANALYSER.prepare( |
|
ctx_id=0, |
|
det_size=(640, 640) if roop.globals.default_det_size else (320, 320), |
|
) |
|
return FACE_ANALYSER |
|
|
|
|
|
def get_first_face(frame: Frame) -> Any: |
|
try: |
|
faces = get_face_analyser().get(frame) |
|
return min(faces, key=lambda x: x.bbox[0]) |
|
|
|
except: |
|
return None |
|
|
|
|
|
def get_all_faces(frame: Frame) -> Any: |
|
try: |
|
faces = get_face_analyser().get(frame) |
|
return sorted(faces, key=lambda x: x.bbox[0]) |
|
except: |
|
return None |
|
|
|
|
|
def extract_face_images(source_filename, video_info, extra_padding=-1.0): |
|
face_data = [] |
|
source_image = None |
|
|
|
if video_info[0]: |
|
frame = get_video_frame(source_filename, video_info[1]) |
|
if frame is not None: |
|
source_image = frame |
|
else: |
|
return face_data |
|
else: |
|
source_image = cv2.imdecode(np.fromfile(source_filename, dtype=np.uint8), cv2.IMREAD_COLOR) |
|
|
|
faces = get_all_faces(source_image) |
|
if faces is None: |
|
return face_data |
|
|
|
i = 0 |
|
for face in faces: |
|
(startX, startY, endX, endY) = face["bbox"].astype("int") |
|
startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image) |
|
if extra_padding > 0.0: |
|
if source_image.shape[:2] == (512, 512): |
|
i += 1 |
|
face_data.append([face, source_image]) |
|
continue |
|
|
|
found = False |
|
for i in range(1, 3): |
|
(startX, startY, endX, endY) = face["bbox"].astype("int") |
|
startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image) |
|
cutout_padding = extra_padding |
|
|
|
padding = int((endY - startY) * cutout_padding) |
|
oldY = startY |
|
startY -= padding |
|
|
|
factor = 0.25 if i == 1 else 0.5 |
|
cutout_padding = factor |
|
padding = int((endY - oldY) * cutout_padding) |
|
endY += padding |
|
padding = int((endX - startX) * cutout_padding) |
|
startX -= padding |
|
endX += padding |
|
startX, endX, startY, endY = clamp_cut_values( |
|
startX, endX, startY, endY, source_image |
|
) |
|
face_temp = source_image[startY:endY, startX:endX] |
|
face_temp = resize_image_keep_content(face_temp) |
|
testfaces = get_all_faces(face_temp) |
|
if testfaces is not None and len(testfaces) > 0: |
|
i += 1 |
|
face_data.append([testfaces[0], face_temp]) |
|
found = True |
|
break |
|
|
|
if not found: |
|
print("No face found after resizing, this shouldn't happen!") |
|
continue |
|
|
|
face_temp = source_image[startY:endY, startX:endX] |
|
if face_temp.size < 1: |
|
continue |
|
|
|
i += 1 |
|
face_data.append([face, face_temp]) |
|
return face_data |
|
|
|
|
|
def clamp_cut_values(startX, endX, startY, endY, image): |
|
if startX < 0: |
|
startX = 0 |
|
if endX > image.shape[1]: |
|
endX = image.shape[1] |
|
if startY < 0: |
|
startY = 0 |
|
if endY > image.shape[0]: |
|
endY = image.shape[0] |
|
return startX, endX, startY, endY |
|
|
|
|
|
|
|
def face_offset_top(face: Face, offset): |
|
face["bbox"][1] += offset |
|
face["bbox"][3] += offset |
|
lm106 = face.landmark_2d_106 |
|
add = np.full_like(lm106, [0, offset]) |
|
face["landmark_2d_106"] = lm106 + add |
|
return face |
|
|
|
|
|
def resize_image_keep_content(image, new_width=512, new_height=512): |
|
dim = None |
|
(h, w) = image.shape[:2] |
|
if h > w: |
|
r = new_height / float(h) |
|
dim = (int(w * r), new_height) |
|
else: |
|
|
|
r = new_width / float(w) |
|
dim = (new_width, int(h * r)) |
|
image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA) |
|
(h, w) = image.shape[:2] |
|
if h == new_height and w == new_width: |
|
return image |
|
resize_img = np.zeros(shape=(new_height, new_width, 3), dtype=image.dtype) |
|
offs = (new_width - w) if h == new_height else (new_height - h) |
|
startoffs = int(offs // 2) if offs % 2 == 0 else int(offs // 2) + 1 |
|
offs = int(offs // 2) |
|
|
|
if h == new_height: |
|
resize_img[0:new_height, startoffs : new_width - offs] = image |
|
else: |
|
resize_img[startoffs : new_height - offs, 0:new_width] = image |
|
return resize_img |
|
|
|
|
|
def rotate_image_90(image, rotate=True): |
|
if rotate: |
|
return np.rot90(image) |
|
else: |
|
return np.rot90(image, 1, (1, 0)) |
|
|
|
|
|
def rotate_anticlockwise(frame): |
|
return rotate_image_90(frame) |
|
|
|
|
|
def rotate_clockwise(frame): |
|
return rotate_image_90(frame, False) |
|
|
|
|
|
def rotate_image_180(image): |
|
return np.flip(image, 0) |
|
|
|
|
|
|
|
|
|
arcface_dst = np.array( |
|
[ |
|
[38.2946, 51.6963], |
|
[73.5318, 51.5014], |
|
[56.0252, 71.7366], |
|
[41.5493, 92.3655], |
|
[70.7299, 92.2041], |
|
], |
|
dtype=np.float32, |
|
) |
|
|
|
|
|
def estimate_norm(lmk, image_size=112): |
|
assert lmk.shape == (5, 2) |
|
if image_size % 112 == 0: |
|
ratio = float(image_size) / 112.0 |
|
diff_x = 0 |
|
elif image_size % 128 == 0: |
|
ratio = float(image_size) / 128.0 |
|
diff_x = 8.0 * ratio |
|
elif image_size % 512 == 0: |
|
ratio = float(image_size) / 512.0 |
|
diff_x = 32.0 * ratio |
|
|
|
dst = arcface_dst * ratio |
|
dst[:, 0] += diff_x |
|
tform = trans.SimilarityTransform() |
|
tform.estimate(lmk, dst) |
|
M = tform.params[0:2, :] |
|
return M |
|
|
|
|
|
|
|
|
|
def align_crop(img, landmark, image_size=112, mode="arcface"): |
|
M = estimate_norm(landmark, image_size) |
|
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) |
|
return warped, M |
|
|
|
|
|
def square_crop(im, S): |
|
if im.shape[0] > im.shape[1]: |
|
height = S |
|
width = int(float(im.shape[1]) / im.shape[0] * S) |
|
scale = float(S) / im.shape[0] |
|
else: |
|
width = S |
|
height = int(float(im.shape[0]) / im.shape[1] * S) |
|
scale = float(S) / im.shape[1] |
|
resized_im = cv2.resize(im, (width, height)) |
|
det_im = np.zeros((S, S, 3), dtype=np.uint8) |
|
det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im |
|
return det_im, scale |
|
|
|
|
|
def transform(data, center, output_size, scale, rotation): |
|
scale_ratio = scale |
|
rot = float(rotation) * np.pi / 180.0 |
|
|
|
t1 = trans.SimilarityTransform(scale=scale_ratio) |
|
cx = center[0] * scale_ratio |
|
cy = center[1] * scale_ratio |
|
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) |
|
t3 = trans.SimilarityTransform(rotation=rot) |
|
t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2)) |
|
t = t1 + t2 + t3 + t4 |
|
M = t.params[0:2] |
|
cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0) |
|
return cropped, M |
|
|
|
|
|
def trans_points2d(pts, M): |
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) |
|
for i in range(pts.shape[0]): |
|
pt = pts[i] |
|
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) |
|
new_pt = np.dot(M, new_pt) |
|
|
|
new_pts[i] = new_pt[0:2] |
|
|
|
return new_pts |
|
|
|
|
|
def trans_points3d(pts, M): |
|
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) |
|
|
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) |
|
for i in range(pts.shape[0]): |
|
pt = pts[i] |
|
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) |
|
new_pt = np.dot(M, new_pt) |
|
|
|
new_pts[i][0:2] = new_pt[0:2] |
|
new_pts[i][2] = pts[i][2] * scale |
|
|
|
return new_pts |
|
|
|
|
|
def trans_points(pts, M): |
|
if pts.shape[1] == 2: |
|
return trans_points2d(pts, M) |
|
else: |
|
return trans_points3d(pts, M) |
|
|
|
def create_blank_image(width, height): |
|
img = np.zeros((height, width, 4), dtype=np.uint8) |
|
img[:] = [0,0,0,0] |
|
return img |
|
|
|
|