Spaces:
Runtime error
Runtime error
import pandas as pd | |
import numpy as np | |
import plotly.graph_objects as go | |
import gradio as gr | |
from io import StringIO | |
import os | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Force CPU-only mode | |
os.environ['CUDA_VISIBLE_DEVICES'] = '' | |
logger.info("Starting application setup") | |
# Embed the CSV data directly in the code | |
csv_data = '''cik,institution,final_score,long_term_performance_score,conviction_and_strategy_score,research_quality_and_adaptability_score,influence_and_governance_score,top_holdings_performance_score | |
0001843237,CEPHEI CAPITAL MANAGEMENT (HONG KONG) LTD,36,14,11,7,3,1 | |
0001407024,NNS HOLDING,24,5,8,5,4,2 | |
0001451928,SAC CAPITAL ADVISORS LP,50,20,10,12,6,2 | |
0001905393,"PCG WEALTH ADVISORS, LLC",68,25,15,14,11,3 | |
0001425362,"WHITE RIVER INVESTMENT PARTNERS, LLC",31,7,10,8,4,2 | |
0001730210,"TRH FINANCIAL, LLC",72,28,16,15,10,3 | |
0001165880,MONTPELIER RE HOLDINGS LTD,68,25,18,12,10,3 | |
0001352776,REGIS MANAGEMENT CO LLC,73,28,17,14,11,3 | |
0001582272,"BATTERY GLOBAL ADVISORS, LLC",65,22,16,14,10,3 | |
0001466715,TRISHIELD CAPITAL MANAGEMENT LLC,59,18,,,, | |
0001092688,IBBOTSON ASSOCIATES INC,69,28,16,12,10,3 | |
0001054880,HUTCHENS INVESTMENT MANAGEMENT INC,69,25,,,,3 | |
0001650781,AXAR CAPITAL MANAGEMENT L.P.,51,16,14,12,6,3 | |
0001425160,MERCHANTS' GATE CAPITAL LP,55,23,12,10,8,2 | |
0001921487,"BEACON CAPITAL MANAGEMENT, LLC",78,25,22,15,12,4 | |
''' | |
# Load the data from the embedded CSV string | |
df = pd.read_csv(StringIO(csv_data)) | |
logger.info(f"Data loaded. Shape: {df.shape}") | |
# Clean the data | |
df = df.dropna(subset=['final_score']) | |
df = df.assign(institution=df['institution'].str.strip()) | |
logger.info(f"Data cleaned. Shape after cleaning: {df.shape}") | |
def create_radar_chart(institution): | |
logger.info(f"Creating radar chart for {institution}") | |
# Get the data for the selected institution | |
inst_data = df[df['institution'] == institution].iloc[0] | |
# Prepare the data for the radar chart | |
categories = ['Long-term Performance', 'Conviction & Strategy', 'Research Quality', | |
'Influence & Governance', 'Top Holdings Performance'] | |
values = [inst_data['long_term_performance_score'], | |
inst_data['conviction_and_strategy_score'], | |
inst_data['research_quality_and_adaptability_score'], | |
inst_data['influence_and_governance_score'], | |
inst_data['top_holdings_performance_score']] | |
# Create the radar chart | |
fig = go.Figure() | |
fig.add_trace(go.Scatterpolar( | |
r=values, | |
theta=categories, | |
fill='toself', | |
name=institution | |
)) | |
fig.update_layout( | |
polar=dict( | |
radialaxis=dict( | |
visible=True, | |
range=[0, max(values)] | |
)), | |
showlegend=False, | |
title=f"{institution} Performance Metrics" | |
) | |
return fig | |
def create_bar_chart(institution): | |
logger.info(f"Creating bar chart for {institution}") | |
# Get the data for the selected institution | |
inst_data = df[df['institution'] == institution].iloc[0] | |
# Prepare the data for the bar chart | |
categories = ['Final Score', 'Long-term Performance', 'Conviction & Strategy', 'Research Quality', | |
'Influence & Governance', 'Top Holdings Performance'] | |
values = [inst_data['final_score'], | |
inst_data['long_term_performance_score'], | |
inst_data['conviction_and_strategy_score'], | |
inst_data['research_quality_and_adaptability_score'], | |
inst_data['influence_and_governance_score'], | |
inst_data['top_holdings_performance_score']] | |
# Create the bar chart | |
fig = go.Figure(go.Bar( | |
x=categories, | |
y=values, | |
text=values, | |
textposition='auto', | |
)) | |
fig.update_layout( | |
title=f"{institution} Scores Comparison", | |
xaxis_title="Metrics", | |
yaxis_title="Score", | |
yaxis=dict(range=[0, 100]) | |
) | |
return fig | |
def update_dashboard(institution): | |
logger.info(f"Updating dashboard for {institution}") | |
radar_chart = create_radar_chart(institution) | |
bar_chart = create_bar_chart(institution) | |
inst_data = df[df['institution'] == institution].iloc[0] | |
cik = inst_data['cik'] | |
final_score = inst_data['final_score'] | |
return (f"CIK: {cik}", | |
f"Final Score: {final_score:.2f}", | |
radar_chart, | |
bar_chart) | |
logger.info("Creating Gradio interface") | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=update_dashboard, | |
inputs=gr.Dropdown(choices=sorted(df['institution'].unique()), label="Select an Institution"), | |
outputs=[ | |
gr.Textbox(label="CIK"), | |
gr.Textbox(label="Final Score"), | |
gr.Plot(label="Performance Metrics Radar Chart"), | |
gr.Plot(label="Scores Comparison Bar Chart") | |
], | |
title="Institution Performance Dashboard", | |
description="Select an institution to view its performance metrics and scores." | |
) | |
logger.info("Launching Gradio interface") | |
# For Hugging Face Spaces deployment | |
iface.launch( | |
share=False, # Disable sharing as it's not needed in Spaces | |
debug=True, # Enable debug mode for more detailed error messages | |
show_error=True, # Show full error stack traces | |
enable_queue=False # Disable queueing to avoid any potential GPU-related queueing issues | |
) | |
logger.info("Application setup complete") | |