Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
import torch | |
# Example with BLIP (replace with your fine-tuned model) | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") | |
def caption_image(image): | |
if image is None: | |
return "No image provided" | |
inputs = processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
out = model.generate(**inputs) | |
caption = processor.decode(out[0], skip_special_tokens=True) | |
return caption | |
demo = gr.Interface( | |
fn=caption_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="Custom UI Action Description" | |
) | |
if __name__ == "__main__": | |
demo.launch() |