Spaces:
Runtime error
Runtime error
import streamlit as st | |
from st_audiorec import st_audiorec | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
#from datasets import load_dataset | |
import torch | |
from gliner import GLiNER | |
from resources import Lead_Labels, entity_labels, set_start, audit_elapsedtime | |
rec = None | |
ner = None | |
iteration = 0 | |
def main (): | |
print(f"Main iteration {iteration}") | |
iteration += 1 | |
if rec is None: | |
print("rec is None") | |
rec = init_model_trans() | |
if ner is None: | |
print("ner is None") | |
ner = init_model_ner() #async | |
labels = entity_labels | |
text = "I have a proposal from cgd where they want one outsystems junior developers and one senior for an estimate of three hundred euros a day, for six months." | |
print(f"get entities from sample text: {text}") | |
get_entity_labels(model=ner, text=text, labels=labels) | |
print("Render UI") | |
wav_audio_data = st_audiorec() | |
if wav_audio_data is not None and rec is not None: | |
print("Loading data...") | |
st.audio(wav_audio_data, format='audio/wav') | |
text = transcribe(wav_audio_data, rec) | |
if text is not None: | |
get_entity_labels(labels=labels, model=ner, text=text) | |
def init_model_trans (): | |
print("Initiating transcription model...") | |
start = set_start() | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=30, | |
batch_size=16, | |
return_timestamps=True, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
print(f'Init model successful: {model}' ) | |
audit_elapsedtime(function="Initiating transcription model", start=start) | |
return pipe | |
def init_model_ner(): | |
print("Initiating NER model...") | |
start = set_start() | |
model = GLiNER.from_pretrained("urchade/gliner_multi") | |
audit_elapsedtime(function="Initiating NER model", start=start) | |
return model | |
def transcribe (audio_sample: bytes, pipe) -> str: | |
start = set_start() | |
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") | |
# sample = dataset[0]["audio"] | |
result = pipe(audio_sample) | |
audit_elapsedtime(function="Transcription", start=start) | |
print(result) | |
st.write('trancription: ', result["text"]) | |
return result["text"] | |
def get_entity_labels(model: GLiNER, text: str, labels: list): #-> Lead_labels: | |
start = set_start() | |
entities = model.predict_entities(text, labels) | |
audit_elapsedtime(function="Retreiving entity labels from text", start=start) | |
for entity in entities: | |
print(entity["text"], "=>", entity["label"]) | |
st.write('Entities: ', entities) | |
# return Lead_Labels() | |
if __name__ == "__main__": | |
print("IN __name__") | |
main() |