Spaces:
Runtime error
Runtime error
import streamlit as st | |
from st_audiorec import st_audiorec | |
import librosa | |
import soundfile | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
from datasets import load_dataset | |
import torch | |
pipe = None | |
audio_sample: bytes = None | |
audio_transcription: str = None | |
def main (): | |
init_model() | |
print('Init model successful') | |
# x = st.slider('Select a value') | |
# st.write(x, 'squared is', x * x) | |
""" | |
wav_audio_data = st_audiorec() | |
if wav_audio_data is not None: | |
st.audio(wav_audio_data, format='audio/wav') | |
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") | |
sample = dataset[0]["audio"] | |
st.write('Sample:', sample) | |
""" | |
async def init_model (): | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=30, | |
batch_size=16, | |
return_timestamps=True, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
async def transcribe (audio_sample: bytes, pipe) -> str: | |
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") | |
# sample = dataset[0]["audio"] | |
result = pipe(audio_sample) | |
print(result) | |
st.write('Result', result["text"]) | |
return result["text"] | |
if __name__ == "__main__": | |
main() |