voiceoperation / app.py
Zeimoto
test main
eaaa4aa
raw
history blame
1.86 kB
import streamlit as st
from st_audiorec import st_audiorec
import librosa
import soundfile
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
import torch
pipe = None
audio_sample: bytes = None
audio_transcription: str = None
def main ():
init_model()
print('Init model successful')
# x = st.slider('Select a value')
# st.write(x, 'squared is', x * x)
"""
wav_audio_data = st_audiorec()
if wav_audio_data is not None:
st.audio(wav_audio_data, format='audio/wav')
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
st.write('Sample:', sample)
"""
async def init_model ():
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
async def transcribe (audio_sample: bytes, pipe) -> str:
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
# sample = dataset[0]["audio"]
result = pipe(audio_sample)
print(result)
st.write('Result', result["text"])
return result["text"]
if __name__ == "__main__":
main()