import streamlit as st from st_audiorec import st_audiorec import librosa import soundfile from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from datasets import load_dataset import torch pipe = None audio_sample: bytes = None audio_transcription: str = None def main (): init_model() print('Init model successful') # x = st.slider('Select a value') # st.write(x, 'squared is', x * x) """ wav_audio_data = st_audiorec() if wav_audio_data is not None: st.audio(wav_audio_data, format='audio/wav') dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") sample = dataset[0]["audio"] st.write('Sample:', sample) """ async def init_model (): device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=16, return_timestamps=True, torch_dtype=torch_dtype, device=device, ) async def transcribe (audio_sample: bytes, pipe) -> str: # dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") # sample = dataset[0]["audio"] result = pipe(audio_sample) print(result) st.write('Result', result["text"]) return result["text"] if __name__ == "__main__": main()