ChatTTS-Forge_English_interface / modules /SynthesizeSegments.py
zhzluke96
update
da8d589
raw
history blame
7.87 kB
from box import Box
from pydub import AudioSegment
from typing import List, Union
from scipy.io.wavfile import write
import io
from modules.api.utils import calc_spk_style
from modules.ssml_parser.SSMLParser import SSMLSegment, SSMLBreak, SSMLContext
from modules.utils import rng
from modules.utils.audio import time_stretch, pitch_shift
from modules import generate_audio
from modules.normalization import text_normalize
import logging
import json
from modules.speaker import Speaker, speaker_mgr
logger = logging.getLogger(__name__)
def audio_data_to_segment(audio_data, sr):
byte_io = io.BytesIO()
write(byte_io, rate=sr, data=audio_data)
byte_io.seek(0)
return AudioSegment.from_file(byte_io, format="wav")
def combine_audio_segments(audio_segments: list[AudioSegment]) -> AudioSegment:
combined_audio = AudioSegment.empty()
for segment in audio_segments:
combined_audio += segment
return combined_audio
def apply_prosody(
audio_segment: AudioSegment, rate: float, volume: float, pitch: float
) -> AudioSegment:
if rate != 1:
audio_segment = time_stretch(audio_segment, rate)
if volume != 0:
audio_segment += volume
if pitch != 0:
audio_segment = pitch_shift(audio_segment, pitch)
return audio_segment
def to_number(value, t, default=0):
try:
number = t(value)
return number
except (ValueError, TypeError) as e:
return default
class TTSAudioSegment(Box):
text: str
temperature: float
top_P: float
top_K: int
spk: int
infer_seed: int
prompt1: str
prompt2: str
prefix: str
_type: str
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
class SynthesizeSegments:
def __init__(self, batch_size: int = 8):
self.batch_size = batch_size
self.batch_default_spk_seed = rng.np_rng()
self.batch_default_infer_seed = rng.np_rng()
def segment_to_generate_params(
self, segment: Union[SSMLSegment, SSMLBreak]
) -> TTSAudioSegment:
if isinstance(segment, SSMLBreak):
return TTSAudioSegment(_type="break")
if segment.get("params", None) is not None:
return TTSAudioSegment(**segment.get("params"))
text = segment.get("text", "")
is_end = segment.get("is_end", False)
text = str(text).strip()
attrs = segment.attrs
spk = attrs.spk
style = attrs.style
ss_params = calc_spk_style(spk, style)
if "spk" in ss_params:
spk = ss_params["spk"]
seed = to_number(attrs.seed, int, ss_params.get("seed") or -1)
top_k = to_number(attrs.top_k, int, None)
top_p = to_number(attrs.top_p, float, None)
temp = to_number(attrs.temp, float, None)
prompt1 = attrs.prompt1 or ss_params.get("prompt1")
prompt2 = attrs.prompt2 or ss_params.get("prompt2")
prefix = attrs.prefix or ss_params.get("prefix")
disable_normalize = attrs.get("normalize", "") == "False"
seg = TTSAudioSegment(
_type="voice",
text=text,
temperature=temp if temp is not None else 0.3,
top_P=top_p if top_p is not None else 0.5,
top_K=top_k if top_k is not None else 20,
spk=spk if spk else -1,
infer_seed=seed if seed else -1,
prompt1=prompt1 if prompt1 else "",
prompt2=prompt2 if prompt2 else "",
prefix=prefix if prefix else "",
)
if not disable_normalize:
seg.text = text_normalize(text, is_end=is_end)
# NOTE 每个batch的默认seed保证前后一致即使是没设置spk的情况
if seg.spk == -1:
seg.spk = self.batch_default_spk_seed
if seg.infer_seed == -1:
seg.infer_seed = self.batch_default_infer_seed
return seg
def process_break_segments(
self,
src_segments: List[SSMLBreak],
bucket_segments: List[SSMLBreak],
audio_segments: List[AudioSegment],
):
for segment in bucket_segments:
index = src_segments.index(segment)
audio_segments[index] = AudioSegment.silent(
duration=int(segment.attrs.duration)
)
def process_voice_segments(
self,
src_segments: List[SSMLSegment],
bucket: List[SSMLSegment],
audio_segments: List[AudioSegment],
):
for i in range(0, len(bucket), self.batch_size):
batch = bucket[i : i + self.batch_size]
param_arr = [self.segment_to_generate_params(segment) for segment in batch]
texts = [params.text for params in param_arr]
params = param_arr[0]
audio_datas = generate_audio.generate_audio_batch(
texts=texts,
temperature=params.temperature,
top_P=params.top_P,
top_K=params.top_K,
spk=params.spk,
infer_seed=params.infer_seed,
prompt1=params.prompt1,
prompt2=params.prompt2,
prefix=params.prefix,
)
for idx, segment in enumerate(batch):
sr, audio_data = audio_datas[idx]
rate = float(segment.get("rate", "1.0"))
volume = float(segment.get("volume", "0"))
pitch = float(segment.get("pitch", "0"))
audio_segment = audio_data_to_segment(audio_data, sr)
audio_segment = apply_prosody(audio_segment, rate, volume, pitch)
original_index = src_segments.index(segment)
audio_segments[original_index] = audio_segment
def bucket_segments(
self, segments: List[Union[SSMLSegment, SSMLBreak]]
) -> List[List[Union[SSMLSegment, SSMLBreak]]]:
buckets = {"<break>": []}
for segment in segments:
if isinstance(segment, SSMLBreak):
buckets["<break>"].append(segment)
continue
params = self.segment_to_generate_params(segment)
if isinstance(params.spk, Speaker):
params.spk = str(params.spk.id)
key = json.dumps(
{k: v for k, v in params.items() if k != "text"}, sort_keys=True
)
if key not in buckets:
buckets[key] = []
buckets[key].append(segment)
return buckets
def synthesize_segments(
self, segments: List[Union[SSMLSegment, SSMLBreak]]
) -> List[AudioSegment]:
audio_segments = [None] * len(segments)
buckets = self.bucket_segments(segments)
break_segments = buckets.pop("<break>")
self.process_break_segments(segments, break_segments, audio_segments)
buckets = list(buckets.values())
for bucket in buckets:
self.process_voice_segments(segments, bucket, audio_segments)
return audio_segments
# 示例使用
if __name__ == "__main__":
ctx1 = SSMLContext()
ctx1.spk = 1
ctx1.seed = 42
ctx1.temp = 0.1
ctx2 = SSMLContext()
ctx2.spk = 2
ctx2.seed = 42
ctx2.temp = 0.1
ssml_segments = [
SSMLSegment(text="大🍌,一条大🍌,嘿,你的感觉真的很奇妙", attrs=ctx1.copy()),
SSMLBreak(duration_ms=1000),
SSMLSegment(text="大🍉,一个大🍉,嘿,你的感觉真的很奇妙", attrs=ctx1.copy()),
SSMLSegment(text="大🍊,一个大🍊,嘿,你的感觉真的很奇妙", attrs=ctx2.copy()),
]
synthesizer = SynthesizeSegments(batch_size=2)
audio_segments = synthesizer.synthesize_segments(ssml_segments)
print(audio_segments)
combined_audio = combine_audio_segments(audio_segments)
combined_audio.export("output.wav", format="wav")