zhzluke96
update
d2b7e94
raw
history blame
6.1 kB
import logging
import math
from typing import Union
import torch
import torchaudio
from audio_denoiser.helpers.audio_helper import (
create_spectrogram,
reconstruct_from_spectrogram,
)
from audio_denoiser.helpers.torch_helper import batched_apply
from torch import nn
from modules.Denoiser.AudioNosiseModel import load_audio_denosier_model
_expected_t_std = 0.23
_recommended_backend = "soundfile"
# ref: https://github.com/jose-solorzano/audio-denoiser
class AudioDenoiser:
def __init__(
self,
local_dir: str,
device: Union[str, torch.device] = None,
num_iterations: int = 100,
):
super().__init__()
if device is None:
is_cuda = torch.cuda.is_available()
if not is_cuda:
logging.warning("CUDA not available. Will use CPU.")
device = torch.device("cuda:0") if is_cuda else torch.device("cpu")
self.device = device
self.model = load_audio_denosier_model(dir_path=local_dir, device=device)
self.model.eval()
self.model_sample_rate = self.model.sample_rate
self.scaler = self.model.scaler
self.n_fft = self.model.n_fft
self.segment_num_frames = self.model.num_frames
self.num_iterations = num_iterations
@staticmethod
def _sp_log(spectrogram: torch.Tensor, eps=0.01):
return torch.log(spectrogram + eps)
@staticmethod
def _sp_exp(log_spectrogram: torch.Tensor, eps=0.01):
return torch.clamp(torch.exp(log_spectrogram) - eps, min=0)
@staticmethod
def _trimmed_dev(waveform: torch.Tensor, q: float = 0.90) -> float:
# Expected for training data is ~0.23
abs_waveform = torch.abs(waveform)
quantile_value = torch.quantile(abs_waveform, q).item()
trimmed_values = waveform[abs_waveform >= quantile_value]
return torch.std(trimmed_values).item()
def process_waveform(
self,
waveform: torch.Tensor,
sample_rate: int,
return_cpu_tensor: bool = False,
auto_scale: bool = False,
) -> torch.Tensor:
"""
Denoises a waveform.
@param waveform: A waveform tensor. Use torchaudio structure.
@param sample_rate: The sample rate of the waveform in Hz.
@param return_cpu_tensor: Whether the returned tensor must be a CPU tensor.
@param auto_scale: Normalize the scale of the waveform before processing. Recommended for low-volume audio.
@return: A denoised waveform.
"""
waveform = waveform.cpu()
if auto_scale:
w_t_std = self._trimmed_dev(waveform)
waveform = waveform * _expected_t_std / w_t_std
if sample_rate != self.model_sample_rate:
transform = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=self.model_sample_rate
)
waveform = transform(waveform)
hop_len = self.n_fft // 2
spectrogram = create_spectrogram(waveform, n_fft=self.n_fft, hop_length=hop_len)
spectrogram = spectrogram.to(self.device)
num_a_channels = spectrogram.size(0)
with torch.no_grad():
results = []
for c in range(num_a_channels):
c_spectrogram = spectrogram[c]
# c_spectrogram: (257, num_frames)
fft_size, num_frames = c_spectrogram.shape
num_segments = math.ceil(num_frames / self.segment_num_frames)
adj_num_frames = num_segments * self.segment_num_frames
if adj_num_frames > num_frames:
c_spectrogram = nn.functional.pad(
c_spectrogram, (0, adj_num_frames - num_frames)
)
c_spectrogram = c_spectrogram.view(
fft_size, num_segments, self.segment_num_frames
)
# c_spectrogram: (257, num_segments, 32)
c_spectrogram = torch.permute(c_spectrogram, (1, 0, 2))
# c_spectrogram: (num_segments, 257, 32)
log_c_spectrogram = self._sp_log(c_spectrogram)
scaled_log_c_sp = self.scaler(log_c_spectrogram)
pred_noise_log_sp = batched_apply(
self.model, scaled_log_c_sp, detached=True
)
log_denoised_sp = log_c_spectrogram - pred_noise_log_sp
denoised_sp = self._sp_exp(log_denoised_sp)
# denoised_sp: (num_segments, 257, 32)
denoised_sp = torch.permute(denoised_sp, (1, 0, 2))
# denoised_sp: (257, num_segments, 32)
denoised_sp = denoised_sp.contiguous().view(1, fft_size, adj_num_frames)
# denoised_sp: (1, 257, adj_num_frames)
denoised_sp = denoised_sp[:, :, :num_frames]
denoised_sp = denoised_sp.cpu()
denoised_waveform = reconstruct_from_spectrogram(
denoised_sp, num_iterations=self.num_iterations
)
# denoised_waveform: (1, num_samples)
results.append(denoised_waveform)
cpu_results = torch.cat(results)
return cpu_results if return_cpu_tensor else cpu_results.to(self.device)
def process_audio_file(
self, in_audio_file: str, out_audio_file: str, auto_scale: bool = False
):
"""
Denoises an audio file.
@param in_audio_file: An input audio file with a format supported by torchaudio.
@param out_audio_file: Am output audio file with a format supported by torchaudio.
@param auto_scale: Whether the input waveform scale should be normalized before processing. Recommended for low-volume audio.
"""
waveform, sample_rate = torchaudio.load(in_audio_file)
denoised_waveform = self.process_waveform(
waveform, sample_rate, return_cpu_tensor=True, auto_scale=auto_scale
)
torchaudio.save(
out_audio_file, denoised_waveform, sample_rate=self.model_sample_rate
)